@phdthesis{Seerangan2023, author = {Seerangan, Kumar}, title = {Actin-based regulation of cell and tissue scale morphogenesis in developing leaves}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2023}, abstract = {Leaves exhibit cells with varying degrees of shape complexity along the proximodistal axis. Heterogeneities in growth directions within individual cells bring about such complexity in cell shape. Highly complex and interconnected gene regulatory networks and signaling pathways have been identified to govern these processes. In addition, the organization of cytoskeletal networks and cell wall mechanical properties greatly influences the regulation of cell shape. Research has shown that microtubules are involved in regulating cellulose deposition and direc-tion of cell growth. However, comprehensive analysis of the regulation of the actin cytoskele-ton in cell shape regulation has not been well studied. This thesis provides evidence that actin regulates aspects of cell growth, division, and direction-al expansion that impacts morphogenesis of developing leaves. The jigsaw puzzle piece mor-phology of epidermal pavement cells further serves as an ideal system to investigate the com-plex process of morphogenetic processes occurring at the cellular level. Here we have em-ployed live cell based imaging studies to track the development of pavement cells in actin com-promised conditions. Genetic perturbation of two predominantly expressed vegetative actin genes ACTIN2 and ACTIN7 results in delayed emergence of the cellular protrusions in pave-ment cells. Perturbation of actin also impacted the organization of microtubule in these cells that is known to promote emergence of cellular protrusions. Further, live-cell imaging of actin or-ganization revealed a correlation with cell shape, suggesting that actin plays a role in influencing pavement cell morphogenesis. In addition, disruption of actin leads to an increase in cell size along the leaf midrib, with cells being highly anisotropic due to reduced cell division. The reduction of cell division further im-pacted the morphology of the entire leaf, with the mutant leaves being more curved. These re-sults suggests that actin plays a pivotal role in regulating morphogenesis at the cellular and tis-sue scales thereby providing valuable insights into the role of the actin cytoskeleton in plant morphogenesis.}, language = {en} } @article{WitzelAbuRishaAlbersetal.2019, author = {Witzel, Katja and Abu Risha, Marua and Albers, Philip and B{\"o}rnke, Frederik and Hanschen, Franziska S.}, title = {Identification and Characterization of Three Epithiospecifier Protein Isoforms in Brassica oleracea}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01552}, pages = {14}, year = {2019}, abstract = {Glucosinolates present in Brassicaceae play a major role in herbivory defense. Upon tissue disruption, glucosinolates come into contact with myrosinase, which initiates their breakdown to biologically active compounds. Among these, the formation of epithionitriles is triggered by the presence of epithiospecifier protein (ESP) and a terminal double bond in the glucosinolate side chain. One ESP gene is characterized in the model plant Arabidopsis thaliana (AtESP; At1g54040.2). However, Brassica species underwent genome triplication since their divergence from the Arabidopsis lineage. This indicates the presence of multiple ESP isoforms in Brassica crops that are currently poorly characterized. We identified three B. oleracea ESPs, specifically BoESP1 (LOC106296341), BoESP2 (LOC106306810), and BoESP3 (LOC106325105) based on in silico genome analysis. Transcript and protein abundance were assessed in shoots and roots of four B. oleracea vegetables, namely broccoli, kohlrabi, white, and red cabbage, because these genotypes showed a differential pattern for the formation of glucosinolate hydrolysis products as well for their ESP activity. BoESP1 and BoESP2 were expressed mainly in shoots, while BoESP3 was abundant in roots. Biochemical characterization of heterologous expressed BoESP isoforms revealed different substrate specificities towards seven glucosinolates: all isoforms showed epithiospecifier activity on alkenyl glucosinolates, but not on non-alkenyl glucosinolates. The pH-value differently affected BoESP activity: while BoESP1 and BoESP2 activities were optimal at pH 6-7, BoESP3 activity remained relatively stable from pH 4 to 7. In order test their potential for the in vivo modification of glucosinolate breakdown, the three isoforms were expressed in A. thaliana Hi-0, which lacks AtESP expression, and analyzed for the effect on their respective hydrolysis products. The BoESPs altered the hydrolysis of allyl glucosinolate in the A. thaliana transformants to release 1-cyano-2,3-epithiopropane and reduced formation of the corresponding 3-butenenitrile and allyl isothiocyanate. Plants expressing BoESP2 showed the highest percentage of released epithionitriles. Given these results, we propose a model for isoform-specific roles of B. oleracea ESPs in glucosinolate breakdown.}, language = {en} } @article{VandenWyngaertGanzertSetoetal.2022, author = {Van den Wyngaert, Silke and Ganzert, Lars and Seto, Kensuke and Rojas-Jimenez, Keilor and Agha, Ramsy and Berger, Stella A. and Woodhouse, Jason and Padisak, Judit and Wurzbacher, Christian and Kagami, Maiko and Grossart, Hans-Peter}, title = {Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits}, series = {ISME journal}, volume = {16}, journal = {ISME journal}, number = {9}, publisher = {Springer Nature}, address = {London}, issn = {1751-7362}, doi = {10.1038/s41396-022-01267-y}, pages = {2242 -- 2254}, year = {2022}, abstract = {Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.}, language = {en} } @article{GeisslerPoyarkovGrismeretal.2015, author = {Geissler, Peter and Poyarkov, Nikolay A. and Grismer, Lee and Nguyen, Truong Q. and An, Hang T. and Neang, Thy and Kupfer, Alexander and Ziegler, Thomas and B{\"o}hme, Wolfgang and M{\"u}ller, Hendrik}, title = {New Ichthyophis species from Indochina (Gymnophiona, Ichthyophiidae): 1. The unstriped forms with descriptions of three new species and the redescriptions of I-acuminatus Taylor, 1960, I-youngorum Taylor, 1960 and I-laosensis Taylor, 1969}, series = {Organisms, diversity \& evolution : official journal of the Gesellschaft f{\"u}r Biologische Systematik}, volume = {15}, journal = {Organisms, diversity \& evolution : official journal of the Gesellschaft f{\"u}r Biologische Systematik}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-6092}, doi = {10.1007/s13127-014-0190-6}, pages = {143 -- 174}, year = {2015}, abstract = {Caecilians of the genus Ichthyophis Fitzinger, 1826 are among the most poorly known amphibian taxa within Southeast Asia. Populations of Ichthyophis from the Indochina region (comprising Cambodia, Laos, and Vietnam) have been assigned to five taxa: Ichthyophis acuminatus, Ichthyophis bannanicus, Ichthyophis kohtaoensis, Ichthyophis laosensis, and Ichthyophis nguyenorum. Barcoding of recently collected specimens indicates that Indochinese congeners form a clade that includes several morphologically and genetically distinct but yet undescribed species. Although body coloration is supported by the molecular analyses as a diagnostic character at species level, unstriped forms are paraphyletic with respect to striped Ichthyophis. Based on our morphological and molecular analyses, three distinct unstriped ichthyophiid species, Ichthyophis cardamomensis sp. nov. from western Cambodia, Ichthyophis catlocensis sp. nov. from southern Vietnam, and Ichthyophis chaloensis sp. nov. from central Vietnam are described as new herein, almost doubling the number of Ichthyophis species known from the Indochinese region. All three new species differ from their unstriped congeners in a combination of morphological and molecular traits. In addition, redescriptions of three unstriped Ichthyophis species (Ichthyophis acuminatus, I. laosensis, I. youngorum) from Indochina and adjacent Thailand are provided.}, language = {en} } @article{SedaghatmehrThirumalaikumarKamranfaretal.2021, author = {Sedaghatmehr, Mastoureh and Thirumalaikumar, Venkatesh P. and Kamranfar, Iman and Schulz, Karina and M{\"u}ller-R{\"o}ber, Bernd and Sampathkumar, Arun and Balazadeh, Salma}, title = {Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery}, series = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, volume = {72}, journal = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, number = {21}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erab304}, pages = {7498 -- 7513}, year = {2021}, abstract = {Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory.}, language = {en} }