@misc{LoehmannsroebenBeckHildebrandtetal.2006, author = {L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beck, Michael and Hildebrandt, Niko and Schm{\"a}lzlin, Elmar and van Dongen, Joost T.}, title = {New challenges in biophotonics : laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10120}, year = {2006}, abstract = {Two examples of our biophotonic research utilizing nanoparticles are presented, namely laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring. Results of the work include significantly enhanced sensitivity of a homogeneous fluorescence immunoassay and markedly improved spatial resolution of oxygen gradients in root nodules of a legume species.}, subject = {Sauerstoff}, language = {en} } @phdthesis{Schulze2017, author = {Schulze, Nicole}, title = {Neue Templatphasen zur anisotropen Goldnanopartikelherstellung durch den Einsatz strukturbildender Polymere}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409515}, school = {Universit{\"a}t Potsdam}, pages = {VI, 117, xv}, year = {2017}, abstract = {Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung von anisotropen Goldnanopartikeln in einer geeigneten Polyelektrolyt-modifizierten Templatphase. Der Mittelpunkt bildet dabei die Auswahl einer geeigneten Templatphase, zur Synthese von einheitlichen und reproduzierbaren anisotropen Goldnanopartikeln mit den daraus resultierenden besonderen Eigenschaften. Bei der Synthese der anisotropen Goldnanopartikeln lag der Fokus in der Verwendung von Vesikeln als Templatphase, wobei hier der Einfluss unterschiedlicher strukturbildender Polymere (stark alternierende Maleamid-Copolymere PalH, PalPh, PalPhCarb und PalPhBisCarb mit verschiedener Konformation) und Tenside (SDS, AOT - anionische Tenside) bei verschiedenen Synthese- und Abtrennungsbedingungen untersucht werden sollte. Im ersten Teil der Arbeit konnte gezeigt werden, dass PalPhBisCarb bei einem pH-Wert von 9 die Bedingungen eines R{\"o}hrenbildners f{\"u}r eine morphologische Transformation von einer vesikul{\"a}ren Phase in eine r{\"o}hrenf{\"o}rmige Netzwerkstruktur erf{\"u}llt und somit als Templatphase zur formgesteuerten Bildung von Nanopartikeln genutzt werden kann. Im zweiten Teil der Arbeit wurde dargelegt, dass die Templatphase PalPhBisCarb (pH-Wert von 9, Konzentration von 0,01 wt.\%) mit AOT als Tensid und PL90G als Phospholipid (im Verh{\"a}ltnis 1:1) die effektivste Wahl einer Templatphase f{\"u}r die Bildung von anisotropen Strukturen in einem einstufigen Prozess darstellt. Bei einer konstanten Synthesetemperatur von 45 °C wurden die besten Ergebnisse bei einer Goldchloridkonzentration von 2 mM, einem Gold-Templat-Verh{\"a}ltnis von 3:1 und einer Synthesezeit von 30 Minuten erzielt. Ausbeute an anisotropen Strukturen lag bei 52 \% (Anteil an dreieckigen Nanopl{\"a}ttchen von 19 \%). Durch Erh{\"o}hung der Synthesetemperatur konnte die Ausbeute auf 56 \% (29 \%) erh{\"o}ht werden. Im dritten Teil konnte durch zeitabh{\"a}ngige Untersuchungen gezeigt werden, dass bei Vorhandensein von PalPhBisCarb die Bildung der energetisch nicht bevorzugten Pl{\"a}ttchen-Strukturen bei Raumtemperatur initiiert wird und bei 45 °C ein Optimum annimmt. Kintetische Untersuchungen haben gezeigt, dass die Bildung dreieckiger Nanopl{\"a}ttchen bei schrittweiser Zugabe der Goldchlorid-Pr{\"a}kursorl{\"o}sung zur PalPhBisCarb enthaltenden Templatphase durch die Dosierrate der vesikul{\"a}ren Templatphase gesteuert werden kann. In umgekehrter Weise findet bei Zugabe der Templatphase zur Goldchlorid-Pr{\"a}kursorl{\"o}sung bei 45 °C ein {\"a}hnlicher, kinetisch gesteuerter Prozess der Bildung von Nanodreiecken statt mit einer maximalen Ausbeute dreieckigen Nanopl{\"a}ttchen von 29 \%. Im letzten Kapitel erfolgten erste Versuche zur Abtrennung dreieckiger Nanopl{\"a}ttchen von den {\"u}brigen Geometrien der gemischten Nanopartikell{\"o}sung mittels tensidinduzierter Verarmungsf{\"a}llung. Bei Verwendung von AOT mit einer Konzentration von 0,015 M wurde eine Ausbeute an Nanopl{\"a}ttchen von 99 \%, wovon 72 \% dreieckiger Geometrien hatten, erreicht.}, language = {de} } @phdthesis{Kraupner2011, author = {Kraupner, Alexander}, title = {Neuartige Synthese magnetischer Nanostrukturen: Metallcarbide und Metallnitride der {\"U}bergangsmetalle Fe/Co/Ni}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52314}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Magnetische Nanopartikel bieten ein großes Potential, da sie einerseits die Eigenschaften ihrer Bulk-Materialien besitzen und anderseits, auf Grund ihrer Gr{\"o}ße, {\"u}ber komplett unterschiedliche magnetische Eigenschaften verf{\"u}gen k{\"o}nnen; Superparamagnetismus ist eine dieser Eigenschaften. Die meisten etablierten Anwendungen magnetischer Nanopartikel basieren heutzutage auf Eisenoxiden. Diese bieten gute magnetische Eigenschaften, sind chemisch relativ stabil, ungiftig und lassen sich auf vielen Synthesewegen relativ einfach herstellen. Die magnetischen Eigenschaften der Eisenoxide sind materialabh{\"a}ngig aber begrenzt, weshalb nach anderen Verbindungen mit besseren Eigenschaften gesucht werden muss. Eisencarbid (Fe3C) kann eine dieser Verbindungen sein. Dieses besitzt vergleichbare positive Eigenschaften wie Eisenoxid, jedoch viel bessere magnetische Eigenschaften, speziell eine h{\"o}here S{\"a}ttigungsmagnetisierung. Bis jetzt wurde Fe3C haupts{\"a}chlich in Gasphasenabscheidungsprozessen synthetisiert oder als Nebenprodukt bei der Synthese von Kohlenstoffstrukturen gefunden. Eine Methode, mit der gezielt Fe3C-Nanopartikel und andere Metallcarbide synthetisiert werden k{\"o}nnen, ist die „Harnstoff-Glas-Route". Neben den Metallcarbiden k{\"o}nnen mit dieser Methode auch die entsprechenden Metallnitride synthetisiert werden, was die breite Anwendbarkeit der Methode unterstreicht. Die „Harnstoff-Glas-Route" ist eine Kombination eines Sol-Gel-Prozesses mit einer anschließenden carbothermalen Reduktion/Nitridierung bei h{\"o}heren Temperaturen. Sie bietet den Vorteil einer einfachen und schnellen Synthese verschiedener Metallcarbide/nitride. Der Schwerpunkt in dieser Arbeit lag auf der Synthese von Eisencarbiden/nitriden, aber auch Nickel und Kobalt wurden betrachtet. Durch die Variation der Syntheseparameter konnten verschiedene Eisencarbid/nitrid Nanostrukturen synthetisiert werden. Fe3C-Nanopartikel im Gr{\"o}ßenbereich von d = 5 - 10 nm konnten, durch die Verwendung von Eisenchlorid, hergestellt werden. Die Nanopartikel weisen durch ihre geringe Gr{\"o}ße superparamagnetische Eigenschaften auf und besitzen, im Vergleich zu Eisenoxid Nanopartikeln im gleichen Gr{\"o}ßenbereich, eine h{\"o}here S{\"a}ttigungsmagnetisierung. Diese konnten in fortf{\"u}hrenden Experimenten erfolgreich in ionischen Fl{\"u}ssigkeiten und durch ein Polymer-Coating, im w{\"a}ssrigen Medium, dispergiert werden. Desweiteren wurde durch ein Templatieren mit kolloidalem Silika eine mesopor{\"o}se Fe3C-Nanostruktur hergestellt. Diese konnte erfolgreich in der katalytischen Spaltung von Ammoniak getestet werden. Mit der Verwendung von Eisenacetylacetonat konnten neben Fe3C-Nanopartikeln, nur durch Variation der Reaktionsparameter, auch Fe7C3- und Fe3N-Nanopartikel synthetisiert werden. Speziell f{\"u}r die Fe3C-Nanopartikel konnte die S{\"a}ttigungsmagnetisierung, im Vergleich zu den mit Eisenchlorid synthetisierten Nanopartikeln, nochmals erh{\"o}ht werden. Versuche mit Nickelacetat f{\"u}hrten zu Nickelnitrid (Ni3N) Nanokristallen. Eine zus{\"a}tzliche metallische Nickelphase f{\"u}hrte zu einer Selbstorganisation der Partikel in Scheiben-{\"a}hnliche {\"U}berstrukturen. Mittels Kobaltacetat konnten, in Sph{\"a}ren aggregierte, metallische Kobalt Nanopartikel synthetisiert werden. Kobaltcarbid/nitrid war mit den gegebenen Syntheseparametern nicht zug{\"a}nglich.}, language = {de} } @phdthesis{Haase2011, author = {Haase, Martin F.}, title = {Modification of nanoparticle surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55413}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Within this work, three physicochemical methods for the hydrophobization of initially hydrophilic solid particles are investigated. The modified particles are then used for the stabilization of oil-in-water (o/w) emulsions. For all introduced methods electrostatic interactions between strongly or weakly charged groups in the system are es-sential. (i) Short chain alkylammonium bromides (C4 - C12) adsorb on oppositely charged solid particles. Macroscopic contact angle measurements of water droplets under air and hexane on flat silica surfaces in dependency of the surface charge density and alkylchain-length allow the calculation of the surface energy and give insights into the emulsification properties of solid particles modified with alkyltrimethylammonium bromides. The measure-ments show an increase of the contact angle with increasing surface charge density, due to the enhanced adsorp-tion of the oppositely charged alkylammonium bromides. Contact angles are higher for longer alkylchain lengths. The surface energy calculations show that in particular the surface-hexane or surface-air interfacial en-ergy is being lowered upon alkylammonium adsorption, while a significant increase of the surface-water interfa-cial energy occurs only at long alkyl chain lengths and high surface charge densities. (ii) The thickness and the charge density of an adsorbed weak polyelectrolyte layer (e.g. PMAA, PAH) influence the wettability of nanoparticles (e.g. alumina, silica, see Scheme 1(b)). Furthermore, the isoelectric point and the pH range of colloidal stability of particle-polyelectrolyte composites depend on the thickness of the weak polye-lectrolyte layer. Silica nanoparticles with adsorbed PAH and alumina nanoparticles with adsorbed PMAA be-come interfacially active and thus able to stabilize o/w emulsions when the degree of dissociation of the polye-lectrolyte layer is below 80 \%. The average droplet size after emulsification of dodecane in water depends on the thickness and the degree of dissociation of the adsorbed PE-layer. The visualization of the particle-stabilized o/w emulsions by cryogenic SEM shows that for colloidally stable alumina-PMAA composites the oil-water interface is covered with a closely packed monolayer of particles, while for the colloidally unstable case closely packed aggregated particles deposit on the interface. (iii) By emulsifying a mixture of the corrosion inhibitor 8-hydroxyquinoline (8-HQ) and styrene with silica nanoparticles a highly stable o/w emulsion can be obtained in a narrow pH window. The amphoteric character of 8-HQ enables a pH dependent electrostatic interaction with silica nanoparticles, which can render them interfa-cially active. Depending on the concentration and the degree of dissociation of 8-HQ the adsorption onto silica results from electrostatic or aromatic interactions between 8-HQ and the particle-surface. At intermediate amounts of adsorbed 8-HQ the oil wettability of the particles becomes sufficient for stabilizing o/w emulsions. Cryogenic SEM visualization shows that the particles arrange then in a closely packed shell consisting of partly of aggregated domains on the droplet interface. For further increasing amounts of adsorbed 8-HQ the oil wet-tability is reduced again and the particles ability to stabilize emulsions decreases. By the addition of hexadecane to the oil phase the size of the droplets can be reduced down to 200 nm by in-creasing the silica mass fraction. Subsequent polymerization produces corrosion inhibitor filled (20 wt-\%) poly-styrene-silica composite particles. The measurement of the release of 8-hydroxyquinoline shows a rapid increase of 8-hydroxyquinoline in a stirred aqueous solution indicating the release of the total content in less than 5 min-utes. The method is extended for the encapsulation of other organic corrosion inhibitors. The silica-polymer-inhibitor composite particles are then dispersed in a water based alkyd emulsion, and the dispersion is used to coat flat aluminium substrates. After drying and cross-linking the polmer-film Confocal Laser Scanning Micros-copy is employed revealing a homogeneous distribution of the particles in the film. Electrochemical Impedance Spectroscopy in aqueous electrolyte solutions shows that films with aggregated particle domains degrade with time and don't provide long-term corrosion protection of the substrate. However, films with highly dispersed particles have high barrier properties for corrosive species. The comparison of films containing silica-polystyrene composite particles with and without 8-hydroxyquinoline shows higher electrochemical impedances when the inhibitor is present in the film. By applying the Scanning Vibrating Electrode Technique the localized corrosion rate in the fractured area of scratched polymer films containing the silica-polymer-inhibitor composite particles is studied. Electrochemical corrosion cannot be suppressed but the rate is lowered when inhibitor filled composite particles are present in the film. By depositing six polyelectrolyte layers on particle stabilized emulsion droplets their surface morphology changes significantly as shown by SEM visualization. When the oil wettability of the outer polyelectrolyte layer increases, the polyelectrolyte coated droplets can act as emulsion stabilizers themselves by attaching onto bigger oil droplets in a closely packed arrangement. In the presence of 3 mM LaCl3 8-HQ hydrophobized silica particles aggregate strongly on the oil-water inter-face. The application of an ultrasonic field can remove two dimensional shell-compartments from the droplet surface, which are then found in the aqueous bulk phase. Their size ranges up to 1/4th of the spherical particle shell.}, language = {en} } @phdthesis{Groenewolt2004, author = {Groenewolt, Matthijs}, title = {Mesostrukturierte Materialien durch Neue Templatsysteme und Nutzung Mesopor{\"o}ser Silikate als Nano-Reaktoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2515}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {In dieser Arbeit wird ein chemisches Abgussverfahren f{\"u}r selbstorganisierte Strukturen in L{\"o}sung verwendet, das es erm{\"o}glicht definierte por{\"o}se Materialien mit Strukturierung auf der Nanometerskala herzustellen. {\"A}hnlich wie beim Gussverfahren von Werkst{\"u}cken wird die Vorlage durch ein geeignetes Material abgebildet. Durch Entfernen dieser Vorlage erh{\"a}lt man ein por{\"o}ses (mit Hohlr{\"a}umen durchsetztes) Negativ derselben. Die auf diese Weise erhaltenen Materialien sind in mehrerer Hinsicht interessant: So lassen sich aus ihrer Morphologie R{\"u}ckschl{\"u}sse {\"u}ber die Natur der selbstorganisierten Strukturen erhalten, da der hier verwendete Abbildungsprozess selbst kleinste strukturelle Details erfasst. Die Hohlr{\"a}ume der synthetisierten por{\"o}sen Stoffe hingegen k{\"o}nnen als winzige Reaktionsgef{\"a}ße, sogenannte \"Nano-Reaktoren\" verwendet werden. Dies erm{\"o}glicht sowohl die Synthese von Nano-Partikeln, die auf anderem Wege nicht zug{\"a}nglich sind, als auch die M{\"o}glichkeit Einfl{\"u}sse der r{\"a}umlichen Restriktion auf die Reaktion zu untersuchen. Besonders r{\"a}umlich ausgedehnte Strukturen sollten hierbei Auff{\"a}lligkeiten zeigen. Somit ist die Gliederung der Arbeit vorgegeben: - Die Herstellung und Charakterisierung von por{\"o}sen Stoffen und selbstorganisierten Strukturen - Ihre Verwendung als \"Nano-Reaktor\"}, subject = {Nanopartikel}, language = {de} } @phdthesis{Kaergell2020, author = {K{\"a}rgell, Martin}, title = {Layer formation from perovskite nanoparticles with tunable optical and electronic properties}, doi = {10.25932/publishup-47566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475667}, school = {Universit{\"a}t Potsdam}, pages = {ix, 233}, year = {2020}, abstract = {Hybrid organic-inorganic perovskites have attracted attention in recent years, caused by the incomparable increase in efficiency in energy convergence, which implies the application as an absorber material for solar cells. A disadvantage of these materials is, among others, the instability to moisture and UV-radiation. One possible solution for these problems is the reduction of the size towards the nano world. With that nanosized perovskites are showing superior stability in comparison to e.g. perovskite layers. Additionally to this the nanosize even enables stable perovskite structures, which could not be achieved otherwise at room temperature. This thesis is separated into two major parts. The separation is done by the composition and the band gap of the material and at the same time the shape and size of the nanoparticles. Here the division is made by the methylammonium lead tribromide nanoplatelets and the caesium lead triiodide nanocubes. The first part is focusing on the hybrid organic-inorganic perovskite (methylammonium lead tribromide) nanoplatelets with a band gap of 2.35 eV and their thermal behaviour. Due to the challenging character of this material, several analysis methods are used to investigate the sub nano and nanostructures under the influence of temperature. As a result, a shift of phase-transition temperatures towards higher temperatures is observed. This unusual behaviour can be explained by the ligand, which is incorporated in the perovskite outer structure and adds phase-stability into the system. The second part of this thesis is focusing on the inorganic caesium lead triiodide nanocubes with a band gap of 1.83 eV. These nanocrystals are first investigated and compared by TEM, XRD and other optical methods. Within these methods, a cuboid and orthorhombic structure are revealed instead of the in literature described cubic shape and structure. Furthermore, these cuboids are investigated towards their self-assembly on a substrate. Here a high degree in self-assembly is shown. As a next step, the ligands of the nanocuboids are exchanged against other ligands to increase the charge carrier mobility. This is further investigated by the above-mentioned methods. The last section is dealing with the enhancement of the CsPbI3 structure, by incorporating potassium in the crystal structure. The results are suggesting here an increase in stability.}, language = {en} } @phdthesis{Sobal2003, author = {Sobal, Neli}, title = {Kolloidale Nanosysteme aus magnetischen und metallischen Materialien : Synthese und Charakterisierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001071}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Ein Spezialgebiet der modernen Mikroelektronik ist die Miniaturisierung und Entwicklung von neuen nanostrukturierten und Komposit-Materialen aus 3d-Metallen. Durch geeignete Zusammensetzungen k{\"o}nnen diese sowohl mit einer hohen S{\"a}ttigungsmagnetisierung und Koerzitivfeldst{\"a}rke als mit besserer Oxidationsbest{\"a}ndigkeit im Vergleich zu den reinen Elementen erzielt werden. In der vorliegenden Arbeit werden neue Methoden f{\"u}r die Herstellung von bimetallischen kolloidalen Nanopartikeln vor allem mit einer Kern-H{\"u}lle-Struktur (Kern@H{\"u}lle) pr{\"a}sentiert. Bei der {\"u}berwiegenden Zahl der vorgestellten Reaktionen handelt es sich um die thermische Zersetzung von metallorganischen Verbindungen wie Kobaltcarbonyl, Palladium- und Platinacetylacetonate oder die chemische Reduktion von Metallsalze mit langkettigem Alkohol in organischem L{\"o}sungsmittel. Daneben sind auch Kombinationen aus diesen beiden Verfahren beschrieben. Es wurden Kolloide aus einem reinen Edelmetall (Pt, Pd, Ag) in einem organischen L{\"o}sungsmittel synthetisiert und daraus neue, bisher in dieser Form nicht bekannte Ag@Co-, Pt@Co-, Pd@Co- und Pt@Pd@Co-Nanopartikel gewonnen. Der Kobaltgehalt der Ag@Co-, Teilchen konnte im Bereich von 5 bis 73 At. \% beliebig eingestellt werden. Der mittlere Durchmesser der Ag@Co-Partikel wurde von 5 nm bis 15 nm variiert. Bei der Herstellung von Pt@Co-Teilchen wurde eine unterschiedlich dicke Kobalt-H{\"u}lle von ca. 1,0 bis 2,5 nm erzielt. Im Fall des Palladiums wurden sowohl monodispere als auch polydisperse Pd-Nanopartikel mit einer maximal 1,7-2,0nm dicken Kobalth{\"u}lle synthetisiert. Ein großer Teil dieser Arbeit befasst sich mit den magnetischen Eigenschaften der kolloidalen Teilchen, wobei die SQUID-Magnetometrie und R{\"o}ntgenzirkulardichroismus (XMCD) daf{\"u}r eingesetzt wurden. Weil magnetische Messungen alleine nur indirekte Schl{\"u}sse {\"u}ber die untersuchten Systeme erlauben, wurde dabei besonderer Wert auf die m{\"o}glichst genaue strukturelle Charakterisierung der Proben mittels moderner Untersuchungsmethoden gelegt. R{\"o}ntgendiffraktometrie (XRD), R{\"o}ntgenabsorptionsfeinstruktur- (EXAFS) und UV-Vis-Spektroskopie sowie Transmissionselektronenmikroskopie (TEM) in Kombination mit Elektronen Energieverlustspektroskopie (EELS) und energiedispersive R{\"o}ntgenfluoreszensanalyse (EDX) wurden verwendet.}, language = {de} } @phdthesis{Abouserie2018, author = {Abouserie, Ahed}, title = {Ionic liquid precursors for multicomponent inorganic nanomaterials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418950}, school = {Universit{\"a}t Potsdam}, pages = {xx, 193}, year = {2018}, abstract = {Health effects, attributed to the environmental pollution resulted from using solvents such as benzene, are relatively unexplored among petroleum workers, personal use, and laboratory researchers. Solvents can cause various health problems, such as neurotoxicity, immunotoxicity, and carcinogenicity. As such it can be absorbed via epidermal or respiratory into the human body resulting in interacting with molecules that are responsible for biochemical and physiological processes of the brain. Owing to the ever-growing demand for finding a solution, an Ionic liquid can use as an alternative solvent. Ionic liquids are salts in a liquid state at low temperature (below 100 C), or even at room temperature. Ionic liquids impart a unique architectural platform, which has been interesting because of their unusual properties that can be tuned by simple ways such as mixing two ionic liquids. Ionic liquids not only used as reaction solvents but they became a key developing for novel applications based on their thermal stability, electric conductivity with very low vapor pressure in contrast to the conventional solvents. In this study, ionic liquids were used as a solvent and reactant at the same time for the novel nanomaterials synthesis for different applications including solar cells, gas sensors, and water splitting. The field of ionic liquids continues to grow, and become one of the most important branches of science. It appears to be at a point where research and industry can work together in a new way of thinking for green chemistry and sustainable production.}, language = {en} } @phdthesis{Note2006, author = {Note, Carine}, title = {Influence of hydrophobically modified polyelectrolytes on nanoparticle synthesis in self-organized systems and in water}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11670}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The formation of colloids by the controlled reduction, nucleation, and growth of inorganic precursor salts in different media has been investigated for more than a century. Recently, the preparation of ultrafine particles has received much attention since they can offer highly promising and novel options for a wide range of technical applications (nanotechnology, electrooptical devices, pharmaceutics, etc). The interest derives from the well-known fact that properties of advanced materials are critically dependent on the microstructure of the sample. Control of size, size distribution and morphology of the individual grains or crystallites is of the utmost importance in order to obtain the material characteristics desired. Several methods can be employed for the synthesis of nanoparticles. On the one hand, the reduction can occur in diluted aqueous or alcoholic solutions. On the other hand, the reduction process can be realized in a template phase, e.g. in well-defined microemulsion droplets. However, the stability of the nanoparticles formed mainly depends on their surface charge and it can be influenced with some added protective components. Quite different types of polymers, including polyelectrolytes and amphiphilic block copolymers, can for instance be used as protecting agents. The reduction and stabilization of metal colloids in aqueous solution by adding self-synthesized hydrophobically modified polyelectrolytes were studied in much more details. The polymers used are hydrophobically modified derivatives of poly(sodium acrylate) and of maleamic acid copolymers as well as the commercially available branched poly(ethyleneimine). The first notable result is that the polyelectrolytes used can act alone as both reducing and stabilizing agent for the preparation of gold nanoparticles. The investigation was then focused on the influence of the hydrophobic substitution of the polymer backbone on the reduction and stabilization processes. First of all, the polymers were added at room temperature and the reduction process was investigated over a longer time period (up to 8 days). In comparison, the reduction process was realized faster at higher temperature, i.e. 100°C. In both cases metal nanoparticles of colloidal dimensions can be produced. However, the size and shape of the individual nanoparticles mainly depends on the polymer added and the temperature procedure used. In a second part, the influence of the prior mentioned polyelectrolytes was investigated on the phase behaviour as well as on the properties of the inverse micellar region (L2 phase) of quaternary systems consisting of a surfactant, toluene-pentanol (1:1) and water. The majority of the present work has been made with the anionic surfactant sodium dodecylsulfate (SDS) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) since they can interact with the oppositely charged polyelectrolytes and the microemulsions formed using these surfactants present a large water-in-oil region. Subsequently, the polymer-modified microemulsions were used as new templates for the synthesis of inorganic particles, ranging from metals to complex crystallites, of very small size. The water droplets can indeed act as nanoreactors for the nucleation and growth of the particles, and the added polymer can influence the droplet size, the droplet-droplet interactions, as well as the stability of the surfactant film by the formation of polymer-surfactant complexes. One further advantage of the polymer-modified microemulsions is the possibility to stabilize the primary formed nanoparticles via a polymer adsorption (steric and/or electrostatic stabilization). Thus, the polyelectrolyte-modified nanoparticles formed can be redispersed without flocculation after solvent evaporation.}, subject = {Mikroemulsion}, language = {en} } @phdthesis{MbayaMani2017, author = {Mbaya Mani, Christian}, title = {Functional nanoporous carbon-based materials derived from oxocarbon-metal coordination complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407866}, school = {Universit{\"a}t Potsdam}, pages = {IV, 135}, year = {2017}, abstract = {Nanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relatively unpredictable processes at the high carbonization temperatures. In the present thesis, nanoporous carbon based materials are prepared by the direct heat treatment of crystalline precursor materials with pre-defined properties. This synthesis strategy does not require any additional carbon sources or classical hard- or soft templates. The highly stable and porous crystalline precursors are based on coordination compounds of the squarate and croconate ions with various divalent metal ions including Zn2+, Cu2+, Ni2+, and Co2+, respectively. Here, the structural properties of the crystals can be controlled by the choice of appropriate synthesis conditions such as the crystal aging temperature, the ligand/metal molar ratio, the metal ion, and the organic ligand system. In this context, the coordination of the squarate ions to Zn2+ yields porous 3D cube crystalline particles. The morphology of the cubes can be tuned from densely packed cubes with a smooth surface to cubes with intriguing micrometer-sized openings and voids which evolve on the centers of the low index faces as the crystal aging temperature is raised. By varying the molar ratio, the particle shape can be changed from truncated cubes to perfect cubes with right-angled edges. These crystalline precursors can be easily transformed into the respective carbon based materials by heat treatment at elevated temperatures in a nitrogen atmosphere followed by a facile washing step. The resulting carbons are obtained in good yields and possess a hierarchical pore structure with well-organized and interconnected micro-, meso- and macropores. Moreover, high surface areas and large pore volumes of up to 1957 m2 g-1 and 2.31 cm3 g-1 are achieved, respectively, whereby the macroscopic structure of the precursors is preserved throughout the whole synthesis procedure. Owing to these advantageous properties, the resulting carbon based materials represent promising supercapacitor electrode materials for energy storage applications. This is exemplarily demonstrated by employing the 3D hierarchical porous carbon cubes derived from squarate-zinc coordination compounds as electrode material showing a specific capacitance of 133 F g-1 in H2SO4 at a scan rate of 5 mV s-1 and retaining 67\% of this specific capacitance when the scan rate is increased to 200 mV s-1. In a further application, the porous carbon cubes derived from squarate-zinc coordination compounds are used as high surface area support material and decorated with nickel nanoparticles via an incipient wetness impregnation. The resulting composite material combines a high surface area, a hierarchical pore structure with high functionality and well-accessible pores. Moreover, owing to their regular micro-cube shape, they allow for a good packing of a fixed-bed flow reactor along with high column efficiency and a minimized pressure drop throughout the packed reactor. Therefore, the composite is employed as heterogeneous catalyst in the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran showing good catalytic performance and overcoming the conventional problem of column blocking. Thinking about the rational design of 3D carbon geometries, the functions and properties of the resulting carbon-based materials can be further expanded by the rational introduction of heteroatoms (e.g. N, B, S, P, etc.) into the carbon structures in order to alter properties such as wettability, surface polarity as well as the electrochemical landscape. In this context, the use of crystalline materials based on oxocarbon-metal ion complexes can open a platform of highly functional materials for all processes that involve surface processes.}, language = {en} }