@article{AdebayoHashimHassetal.2017, author = {Adebayo, Segun Emmanuel and Hashim, Norhashila and Hass, Roland and Reich, Oliver and Regen, Christian and M{\"u}nzberg, Marvin and Abdan, Khalina and Hanafi, Marsyita and Zude, Manuela}, title = {Using absorption and reduced scattering coefficients for non-destructive analyses of fruit flesh firmness and soluble solids content in pear}, series = {Postharvest Biology and Technology}, volume = {130}, journal = {Postharvest Biology and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-5214}, doi = {10.1016/j.postharvbio.2017.04.004}, pages = {56 -- 63}, year = {2017}, abstract = {Quality attributes of fruit determine its acceptability by the retailer and consumer. The objective of this work was to investigate the potential of absorption (μa) and reduced scattering (μs') coefficients of European pear to analyze its fruit flesh firmness and soluble solids content (SSC). The absolute reference values, μa* (cm-1) and μs'* (cm-1), of pear were invasively measured, employing multi-spectral photon density wave (PDW) spectroscopy at preselected wavelengths of 515, 690, and 940 nm considering two batches of unripe and overripe fruit. On eight measuring dates during fruit development, μa and μs' were analyzed non-destructively by means of laser light backscattering imaging (LLBI) at similar wavelengths of 532, 660, and 830 nm by means of fitting according to Farrell's diffusion theory, using fix reference values of either μa* or μs'*. Both, the μa* and the μa as well as μs'* and μs' showed similar trends. Considering the non-destructively measured data during fruit development, μa at 660 nm decreased 91 till 141 days after full bloom (dafb) from 1.49 cm-1 to 0.74 cm-1 due to chlorophyll degradation. At 830 nm, μa only slightly decreased from 0.41 cm-1 to 0.35 cm-1. The μs' at all wavelengths revealed a decreasing trend as the fruit developed. The difference measured at 532 nm was most pronounced decreasing from 24 cm-1 to 10 cm-1, while at 660 nm and 830 nm values decreased from 15 cm-1 to 13 cm-1 and from 10 cm-1 to 8 cm-1, respectively. When building calibration models with partial least-squares regression analysis on the optical properties for non-destructive analysis of the fruit SSC, μa at 532 nm and 830 nm resulted in a correlation coefficient of R = 0.66, however, showing high measuring uncertainty. The combination of all three wavelengths gave an enhanced, encouraging R = 0.89 for firmness analysis using μs' in the freshly picked fruit.}, language = {en} } @phdthesis{Erler2020, author = {Erler, Alexander}, title = {Entwicklung von online-Detektionsverfahren f{\"u}r landwirtschaftlich relevante Analyten}, doi = {10.25932/publishup-47340}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473406}, school = {Universit{\"a}t Potsdam}, pages = {viii, 123}, year = {2020}, abstract = {Die Entwicklung nachhaltiger Bewirtschaftungs- und Produktionsmethoden ist eine der zentralen Fragestellungen der modernen Agrarwirtschaft. Die vorliegende Arbeit besch{\"a}ftigt sich mit zwei Forschungsthemen, die das Konzept Nachhaltigkeit beinhalten. In beiden F{\"a}llen werden analytische Grundlagen f{\"u}r die Entwicklung entsprechender landwirtschaftlicher Arbeitsmethoden gelegt. Das erste Thema ist an den sogenannten Pr{\"a}zisionsackerbau angelehnt. Bei diesem wird die Bearbeitung von Agrarfl{\"a}chen ortsabh{\"a}ngig ausgef{\"u}hrt. Das heißt, die Ausbringung von Saatgut, D{\"u}nger, Bew{\"a}sserung usw. richtet sich nach den Eigenschaften des jeweiligen Standortes und wird nicht pauschal gleichm{\"a}ßig {\"u}ber ein ganzes Feld verteilt. Voraussetzung hierf{\"u}r ist eine genaue Kenntnis der Bodeneigenschaften. In der vorliegenden Arbeit sollten diese Parameter mittels der analytischen Technik der Laser-induzierten Breakdown Spektroskopie (LIBS), die eine Form der Elementaranalyse darstellt, bestimmt werden. Bei den hier gesuchten Bodeneigenschaften handelte es sich um die Gehalte von N{\"a}hrstoffen sowie einige sekund{\"a}re Parameter wie den Humusanteil, den pH-Wert und den pflanzenverf{\"u}gbaren Anteil einzelner N{\"a}hrstoffe. Diese Eigenschaften wurden durch etablierte Referenzanalysen bestimmt. Darauf aufbauend wurden die Messergebnissen der LIBS-Untersuchungen durch verschiedene Methoden der sogenannten multivariaten Datenanalyse (MVA) ausgewertet. Daraus sollten Modelle zur Vorhersage der Bodenparameter in zuk{\"u}nftigen LIBS-Messungen erarbeitet werden. Die Ergebnisse dieser Arbeit zeigten, dass mit der Kombination von LIBS und MVA s{\"a}mtliche Bodenparameter erfolgreich vorhergesagt werden konnten. Dies beinhaltete sowohl die tats{\"a}chlich messbaren Elemente als auch die sekund{\"a}ren Eigenschaften, welche durch die MVA mit den Elementgehalten in Zusammenhang gebracht wurden. Das zweite Thema besch{\"a}ftigt sich mit der Vermeidung von Verlusten durch Sch{\"a}dlingsbefall bei der Getreidelagerung. Hier sollten mittels der Ionenmobilit{\"a}tsspektrometrie (IMS) Schimmelpilzkontaminationen detektiert werden. Dabei wurde nach den fl{\"u}chtigen Stoffwechselprodukten der Pilze gesucht. Die durch Referenzmessungen mit Massenspektrometern identifizierten Substanzen konnten durch IMS im Gasvolumen {\"u}ber den Proben, dem sogenannten Headspace, nachgewiesen werden. Dabei wurde nicht nur die Anwesenheit einer Kontamination festgestellt, sondern diese auch charakterisiert. Die freigesetzten Substanzen bildeten spezifische Muster, anhand derer die Pilze identifiziert werden konnten. Hier wurden sowohl verschiedene Gattungen als auch einzelne Arten unterschieden. Die Messungen fanden auf verschiedenen N{\"a}hrb{\"o}den statt um den Einfluss dieser auf die Stoffwechselprodukte zu beobachten. Auch die sekund{\"a}ren Stoffwechselprodukte der Schimmelpilze, die Mykotoxine, konnten durch IMS detektiert werden. Beide in dieser Arbeit vorgestellten Forschungsthemen konnten erfolgreich abgeschlossen werden. Sowohl LIBS als auch IMS erwiesen sich f{\"u}r den Nachweis der jeweiligen Analyten als geeignet, und der Einsatz moderner computergest{\"u}tzter Auswertemethoden erm{\"o}glichte die genaue Charakterisierung der gesuchten Parameter. Beide Techniken k{\"o}nnen in Form von mobilen Ger{\"a}ten verwendet werden und zeichnen sich durch eine schnelle und sichere Analyse aus. In Kombination mit entsprechenden Modellen der MVA sind damit alle Voraussetzungen f{\"u}r Vor-Ort-Untersuchungen und damit f{\"u}r den Einsatz in der Landwirtschaft erf{\"u}llt.}, language = {de} } @article{ErlerRiebeBeitzetal.2018, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Grothusheitkamp, Daniela and Kunz, T. and Methner, Frank-J{\"u}rgen}, title = {Detection of volatile organic compounds in the headspace above mold fungi by GC-soft X-radiation-based APCI-MS}, series = {Journal of mass spectrometr}, volume = {53}, journal = {Journal of mass spectrometr}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.4210}, pages = {911 -- 920}, year = {2018}, abstract = {Mold fungi on malting barley grains cause major economic loss in malting and brewery facilities. Possible proxies for their detection are volatile and semivolatile metabolites. Among those substances, characteristic marker compounds have to be identified for a confident detection of mold fungi in varying surroundings. The analytical determination is usually performed through passive sampling with solid phase microextraction, gas chromatographic separation, and detection by electron ionization mass spectrometry (EI-MS), which often does not allow a confident determination due to the absence of molecular ions. An alternative is GC-APCI-MS, generally, allowing the determination of protonated molecular ions. Commercial atmospheric pressure chemical ionization (APCI) sources are based on corona discharges, which are often unspecific due to the occurrence of several side reactions and produce complex product ion spectra. To overcome this issue, an APCI source based on soft X-radiation is used here. This source facilitates a more specific ionization by proton transfer reactions only. In the first part, the APCI source is characterized with representative volatile fungus metabolites. Depending on the proton affinity of the metabolites, the limits of detection are up to 2 orders of magnitude below those of EI-MS. In the second part, the volatile metabolites of the mold fungus species Aspergillus, Alternaria, Fusarium, and Penicillium are investigated. In total, 86 compounds were found with GC-EI/APCI-MS. The metabolites identified belong to the substance classes of alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, terpenes, and sesquiterpenes. In addition to substances unspecific for the individual fungus species, characteristic patterns of metabolites, allowing their confident discrimination, were found for each of the 4 fungus species. Sixty-seven of the 86 metabolites are detected by X-ray-based APCI-MS alone. The discrimination of the fungus species based on these metabolites alone was possible. Therefore, APCI-MS in combination with collision induced dissociation alone could be used as a supervision method for the detection of mold fungi.}, language = {en} } @article{RiebeErlerBrinkmannetal.2019, author = {Riebe, Daniel and Erler, Alexander and Brinkmann, Pia and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Gebbers, Robin}, title = {Comparison of Calibration Approaches in Laser-Induced Breakdown Spectroscopy for Proximal Soil Sensing in Precision Agriculture}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19235244}, pages = {16}, year = {2019}, abstract = {The lack of soil data, which are relevant, reliable, affordable, immediately available, and sufficiently detailed, is still a significant challenge in precision agriculture. A promising technology for the spatial assessment of the distribution of chemical elements within fields, without sample preparation is laser-induced breakdown spectroscopy (LIBS). Its advantages are contrasted by a strong matrix dependence of the LIBS signal which necessitates careful data evaluation. In this work, different calibration approaches for soil LIBS data are presented. The data were obtained from 139 soil samples collected on two neighboring agricultural fields in a quaternary landscape of northeast Germany with very variable soils. Reference analysis was carried out by inductively coupled plasma optical emission spectroscopy after wet digestion. The major nutrients Ca and Mg and the minor nutrient Fe were investigated. Three calibration strategies were compared. The first method was based on univariate calibration by standard addition using just one soil sample and applying the derived calibration model to the LIBS data of both fields. The second univariate model derived the calibration from the reference analytics of all samples from one field. The prediction is validated by LIBS data of the second field. The third method is a multivariate calibration approach based on partial least squares regression (PLSR). The LIBS spectra of the first field are used for training. Validation was carried out by 20-fold cross-validation using the LIBS data of the first field and independently on the second field data. The second univariate method yielded better calibration and prediction results compared to the first method, since matrix effects were better accounted for. PLSR did not strongly improve the prediction in comparison to the second univariate method.}, language = {en} } @misc{WolffCanilRehermannetal.2020, author = {Wolff, Christian Michael and Canil, Laura and Rehermann, Carolin and Nguyen, Ngoc Linh and Zu, Fengshuo and Ralaiarisoa, Maryline and Caprioglio, Pietro and Fiedler, Lukas and Stolterfoht, Martin and Kogikoski, Junior, Sergio and Bald, Ilko and Koch, Norbert and Unger, Eva L. and Dittrich, Thomas and Abate, Antonio and Neher, Dieter}, title = {Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445-1456)}, series = {ACS nano}, volume = {14}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1936-0851}, doi = {10.1021/acsnano.0c08081}, pages = {16156 -- 16156}, year = {2020}, language = {en} } @misc{WolffCaprioglioStolterfohtetal.2019, author = {Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and Neher, Dieter}, title = {Nonradiative Recombination in Perovskite Solar Cells}, series = {Advanced materials}, volume = {31}, journal = {Advanced materials}, number = {52}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201902762}, pages = {20}, year = {2019}, abstract = {Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their V-OC to values well below the Shockley-Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi-Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the V-OC of operational devices. These measurements prove that in state-of-the-art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump-probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome-paving the way to the thermodynamic efficiency limit.}, language = {en} } @article{SalibaCorreaBaenaWolffetal.2018, author = {Saliba, Michael and Correa-Baena, Juan-Pablo and Wolff, Christian Michael and Stolterfoht, Martin and Phung, Thi Thuy Nga and Albrecht, Steve and Neher, Dieter and Abate, Antonio}, title = {How to Make over 20\% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b00136}, pages = {4193 -- 4201}, year = {2018}, abstract = {Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20\%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20\% efficiencies on a regular n-i-p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n-i-p) and inverted (p-i-n) architectures with >= 20\% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication , protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting standard may, in turn, accelerate the development of perovskite solar cells and related research fields.}, language = {en} } @article{KleinpeterKoch2022, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Cyclazines-structure and aromaticity or antiaromaticity on the magnetic criterion}, series = {European journal of organic chemistry}, volume = {2022}, journal = {European journal of organic chemistry}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202101362}, pages = {12}, year = {2022}, abstract = {Structure and spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of all ten cycl[2.2.2]azine to cycl[4.4.4]azine, hetero-analogues and the corresponding hydrocarbons have been calculated at the B3LYP/6-311G(d,p) theory level using the GIAO perturbation method and employing the nucleus independent chemical shift (NICS) concept. The TSNMRS values (actually, the ring current effect as measurable in H-1 NMR spectroscopy) are visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction, and employed to readily qualify and quantify the degree of (anti)aromaticity. Results are confirmed by NMR [delta(H-1)/ppm, delta(N-15)/ppm] and geometry (planar, twisted, bow-shaped) data. The cyclazines N[2.2.2](-) up to N[2.4.4](-) are planar or at most slightly bowl-shaped and, due to coherent peripheral ring currents (except in N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+)), develop aromaticity or anti-aromaticity of the whole molecules dependent on the number of peripheral conjugated pi electrons. The cyclazines N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+) develop two ring currents of different direction within the same molecule, in which the dominating ring current proves to be paratropic (in N[3.3.4](+) diatropic) including the nodal N p(z) lone pair into the conjugation. The residual cyclazines N[3.4.4], N[4.4.4](-) and N[4.4.4](+) are heavily twisted and, therefore, are not developing peripheral or diverse ring currents. The TSNMRS information about cyclazines and the parent tricyclic annulene analogues is congruent subject to structure and number of peripheral or internal conjugated pi electrons, the corresponding (anti)aromaticity is in unequivocal accordance with Huckel's rule.}, language = {en} } @article{ShainyanKirpichenkoChipaninaetal.2015, author = {Shainyan, Bagrat A. and Kirpichenko, Svetlana V. and Chipanina, Nina N. and Oznobikhina, Larisa P. and Kleinpeter, Erich and Shlykov, Sergey A. and Osadchiy, Dmitriy Yu.}, title = {Synthesis and Conformational Analysis of 3-Methyl-3-silatetrahydropyran by GED, FTIR, NMR, and Theoretical Calculations: Comparative Analysis of 1-Hetero-3-methyl-3-silacyclohexanes}, series = {The journal of organic chemistry}, volume = {80}, journal = {The journal of organic chemistry}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.5b02355}, pages = {12492 -- 12500}, year = {2015}, abstract = {3-Methyl-3-silatetrahydropyran 1 was synthesized and its molecular structure and conformational behavior was studied by gas-phase electron diffraction (GED), FTIR, low temperature H-1 and C-13 NMR spectroscopy, and by theoretical calculations (DFT, MP2). Two conformers; 1-ax and 1-eq; were located on the potential energy Surface. In the gas phase; a slight predominance of the axial conformer was determined, with the ratio 1-ax:1-eq = 54(9):46(9) (from GED) or 53:47 or 61;39 (from IR). In solution, LT NMR spectroscopy at 103 K gives the ratio 1-ax:1-eq = 35:65 (-Delta G(103)degrees = 0.13 kcal/mol). Simulation of solvent effects using the PCM continuum model or by calculation of the corresponding solvent-solute complexes allowed us to rationalize the experimentally observed opposite conformational predominance of the conformers of 3-methyl-3-silatettahydropyran in the gas phase and in solution. Comparative analysis of the effect of heteroatom in 1-hetero-3-methyl-3-silacyclohexanes on the structure, stereoelectronic interactions, and relative energies of the conformers is done.}, language = {en} } @article{BalciAkkayaAkyuzetal.2016, author = {Balci, K. and Akkaya, Y. and Akyuz, S. and Collier, W. B. and Stricker, M. C. and Stover, D. D. and Ritzhaupt, G. and Koch, Andreas and Kleinpeter, Erich}, title = {The effects of conformation and zwitterionic tautomerism on the structural and vibrational spectral data of anserine}, series = {Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy}, volume = {86}, journal = {Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-2031}, doi = {10.1016/j.vibspec.2016.08.003}, pages = {277 -- 289}, year = {2016}, abstract = {In this study, the stable conformers of neutral anserine were searched by molecular dynamics simulations and energy minimization calculations using the MM2 force field. Thermochemical calculations at B3LYP/6-31G(d) level of theory followed these preliminary calculations. The results confirmed that neutral anserine has quite a flexible structure and many stable gauche and trans conformers at room temperature. Nevertheless, two are considerably more favourable in energy than the others and expected to dominate the gas-phase and matrix IR spectra of the molecule. The corresponding structural and vibrational spectral data for these two conformers of neutral anserine, whose relative stabilities were also examined by high-accuracy energy calculations carried out using G3MP2B3 method, and for the most stable conformer of anserine in zwitterion form were calculated at B3LYP/6-311++G(d,p) level of theory. The calculated harmonic force constants were refined using the Scaled Quantum Mechanical Force Field (SQM-FF) method and then used to produce the refined wavenumbers, potential energy distributions (PEDs) and IR and Raman intensities. These refined data together with the scaled harmonic wavenumbers obtained using another method, Dual Scale factors (DS), enabled us to correctly analyse the observed IR and Raman spectra of anserine and revealed the effects of conformation and zwitterionic tautomerism on its structural and vibrational spectral data. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{WentrupKochKleinpeter2016, author = {Wentrup, Curt and Koch, Rainer and Kleinpeter, Erich}, title = {Twisted C=C Double Bonds with Very Low Rotational Barriers in Dioxanediones and Isoxazolones Determined by Low-Temperature Dynamic NMR Spectroscopy and Computational Chemistry}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201600931}, pages = {4985 -- 4990}, year = {2016}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {The 13 C chemical shift and the anisotropy effect of the carbene electron-deficient centre}, series = {Magnetic resonance in chemistry}, volume = {58}, journal = {Magnetic resonance in chemistry}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4979}, pages = {280 -- 292}, year = {2019}, abstract = {Both the C-13 chemical shift and the calculated anisotropy effect (spatial magnetic properties) of the electron-deficient centre of stable, crystalline, and structurally characterized carbenes have been employed to unequivocally characterize potential resonance contributors to the present mesomerism (carbene, ylide, betaine, and zwitter ion) and to determine quantitatively the electron deficiency of the corresponding carbene carbon atom. Prior to that, both structures and C-13 chemical shifts were calculated and compared with the experimental delta(C-13)/ppm values and geometry parameters (as a quality criterion for obtained structures).}, language = {en} } @article{KolocourisKochKleinpeteretal.2015, author = {Kolocouris, Antonios and Koch, Andreas and Kleinpeter, Erich and Stylianakis, Ioannis}, title = {2-Substituted and 2,2-disubstituted adamantane derivatives as models for studying substituent chemical shifts and C-H-ax center dot center dot center dot Y-ax cyclohexane contacts-results from experimental and theoretical NMR spectroscopic chemical shifts and DFT structures}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {16}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.01.044}, pages = {2463 -- 2481}, year = {2015}, abstract = {The complete H-1 and C-13 NMR chemical shifts assignment for various 2-substituted and 2,2-disubstituted adamantane derivatives 1-38 in CDCl3 solution was realized on the basis of NMR experiments combined with chemical structure information and DFT-GIAO (B3LYP/6-31+G(d,p)-GIAO) calculations of chemical shifts in solution. Substituent-induced C-13 NMR chemical shifts (SCS) are discussed. C-H-ax center dot center dot center dot Y-ax contacts are a textbook prototype of steric hindrance in organic chemistry. The nature of these contacts will be further investigated in this work on basis of new adamantane derivatives, which are substituted at C-2 to provide models for 1,4-C-H-ax center dot center dot center dot Y-ax and 1,5-C-H-ax center dot center dot center dot Y-ax contacts. The B3LYP/6-31+G(d,p) calculations predicted the presence of NBO hyperconjugative attractive interactions between C-H-ax and Y-ax groups along C-H-ax center dot center dot center dot Y-ax contacts. The H-1 NMR signal separation, Delta delta(gamma-CH2), reflects the strength of the H-bonded C-H-ax center dot center dot center dot Y-ax contact. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{Kleinpeter2014, author = {Kleinpeter, Erich}, title = {Quantification and visualization of the anisotropy effect in NMR spectroscopy by through-space NMR shieldings}, series = {Annual reports on NMR spectroscopy}, volume = {82}, journal = {Annual reports on NMR spectroscopy}, editor = {Webb, GA}, publisher = {Elsevier}, address = {San Diego}, isbn = {978-0-12-800184-4}, issn = {0066-4103}, doi = {10.1016/B978-0-12-800184-4.00003-5}, pages = {115 -- 166}, year = {2014}, abstract = {The anisotropy effect of functional groups (respectively the ring-current effect of aryl moieties) in H-1 NMR spectra has been computed as spatial NICS (through-space NMR chemical shieldings) and visualized by iso-chemical-shielding surfaces of various size and low(high) field direction. Hereby, the anisotropy/ring-current effect, which proves to be the molecular response property of spatial NICS, can be quantified and can be readily employed for assignment purposes in proton NMR spectroscopy-characteristic examples of stereochemistry and position assignments (the latter in supramolecular structures) will be given. In addition, anisotropy/ring-current effects in H-1 NMR spectra can be quantitatively separated from the second dominant structural effect in proton NMR spectra, the steric compression effect, pointing into the reverse direction, and the ring-current effect, by far the strongest anisotropy effect, can be impressively employed to visualize and quantify (anti) aromaticity and to clear up standing physical-organic phenomena as are pseudo-, spherical, captodative, homo-and chelatoaromaticity, to characterize the pi-electronic structure of, for example, fulvenes, fulvalenes, annulenes or fullerenes and to differentiate aromatic and quinonoid structures.}, language = {en} } @article{KleinpeterKoch2021, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Dative or coordinative carbon-boron bond in boron trapped N-heterocyclic carbenes (NHCs)?}, series = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, volume = {80}, journal = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-4020}, doi = {10.1016/j.tet.2020.131787}, pages = {8}, year = {2021}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of isolated as well as B-C bond length varied model compounds (BR3 trapped NHCs) have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the present dative vs. coordinative bond character of the boron-carbon bond in the trapped NHCs. Results are confirmed by bond lengths and B-11/C-13 chemical shift variations in the BR3 trapped NHCs.}, language = {en} } @article{KleinpeterKoch2017, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic pi-electron delocalization?}, series = {Tetrahedron}, volume = {73}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.05.062}, pages = {4265 -- 4274}, year = {2017}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteraromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring pi-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BauerHartmannKleinpeteretal.2015, author = {Bauer, Monika and Hartmann, Lutz and Kleinpeter, Erich and Kuschel, Frank and Pithart, Cornelia and Weissflog, Wolfgang}, title = {Chiral Dopants Derived from Ephedrine/Pseudoephedrine: Structure and Medium Effects on the Helical Twisting Power}, series = {Molecular crystals and liquid crystals}, volume = {608}, journal = {Molecular crystals and liquid crystals}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1542-1406}, doi = {10.1080/15421406.2014.949592}, pages = {14 -- 24}, year = {2015}, abstract = {Chiral dopants were obtained by acylation of enantiomerically pure ephedrine and pseudoephedrine with promesogenic carbonyl reagents. The products have been investigated with respect to their chiral transfer ability on nematic host matrices characterized by extreme differences of the dielectric anisotropy. It has been found that the medium dependence of the helicity induction nearly disappears at reduced temperatures. Based on variable temperature H-1 NMR studies on monoacylated homologues, the estimated coalescence temperatures and free activation enthalpies for the hindered rotation around C-N bonds could be correlated with the helical twisting power. Measurements by dielectric spectroscopy reveal the correlation between the molar mass of substituents linked to the chiral building block and the dynamic glass transition of corresponding chiral dopants. Furthermore, the effect of intramolecular and intermolecular hydrogen bonds has been studied by ATR-FTIR spectroscopy.}, language = {en} } @article{KleinpeterKoch2019, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Benzyne - an acetylene- or cumulene-like electronic structure?}, series = {Tetrahedron}, volume = {75}, journal = {Tetrahedron}, number = {33}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2019.07.011}, pages = {4663 -- 4668}, year = {2019}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of benzyne 1 and analogues (benzene 2, 1,2,3-cyclohexatriene 3, cyclohexen-3-yne 4, cyclohexen-4-yne 5, cyclohexyne 6) have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values could be employed to compare the diatropic ring current effects of benzene and benzyne, and, when compared with the spatial magnetic properties of the analogues, to answer the question whether the benzyne electronic structure is more acetylene- or cumulene-like, supported by structural data and delta(C-13)/ppm values. (C) 2019 Published by Elsevier Ltd.}, language = {en} } @article{KleinpeterKriigerKoch2015, author = {Kleinpeter, Erich and Kriiger, Stefanie and Koch, Andreas}, title = {Anisotropy Effect of Three-Membered Rings in H-1 NMR Spectra: Quantification by TSNMRS and Assignment of the Stereochemistry}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {119}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.5b03078}, pages = {4268 -- 4276}, year = {2015}, abstract = {The spatial magnetic properties (through Space NAIR shieldings, TSNMRSs) of cyclopropane; of the heteroanalogous oxirane, thiirane, and aziridine; and of various substituted dis-, and tris-cyclic analogues have been computed by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSSs) of various size and direction. The TSNMRS values, thus obtained, can be employed to visualize the anisotropy (ring current) effect of I the cyclopropane ring moiety. This approach has been employed to qualify and quantify substituent influences and contributions of appropriate ring heteroatoms O, NH, and S on the anisotropy (ring current) effect of three-mernbered ring moieties, and to assign the stereochemistry of mono-, bis-, and tris cyclic structures containing cyclopropane as a structural element. Characteristic examples are included.}, language = {en} } @article{ZborowskiKochKleinpeteretal.2014, author = {Zborowski, Krzysztof Kazimierz and Koch, Andreas and Kleinpeter, Erich and Proniewicz, Leonard Marian}, title = {Searching for aromatic celate rings. Oxygen versus Thio and Seleno Ligands}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {228}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {8}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2014-0528}, pages = {869 -- 878}, year = {2014}, abstract = {As a part of searching for fully aromatic chelate compounds, copper complexes of malondialdehyde as well as its sulfur and selenium derivatives were investigated using the DFT quantum chemical methods. Chelate complexes of both Cu(I) and Cu(II) ions wereconsidered. Aromaticity of the metal complexes studied were analyzed using NICS(0), NICS(1), PDI, I-ring, MCI, ICMCI and I-B aromaticity indices, and by TSNMRS visualizations of the spatial magnetic properties. It seems that partial aromaticityof studied chelates increases when oxygen atoms in malondialdehyde are replaced by sulfur and selenium.}, language = {en} }