@article{AldorettaStLouisRichardsonetal.2015, author = {Aldoretta, E. J. and St-Louis, N. and Richardson, N. D. and Moffat, Anthony F. J. and Eversberg, T. and Hill, G. M.}, title = {The Results of the 2013 Pro-Am Wolf-Rayet Campaign}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87713}, pages = {75 -- 78}, year = {2015}, abstract = {Professional and amateur astronomers around the world contributed to a 4-month long campaign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of ∼ 40 days (half-life of ∼ 20 days).}, language = {en} } @article{NeugentMasseyHillieretal.2015, author = {Neugent, K. F. and Massey, P. and Hillier, D. J. and Morrell, N. I.}, title = {The Discovery and Physical Parameterization of a New Type of Wolf-Rayet Star}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87766}, pages = {101 -- 104}, year = {2015}, abstract = {As part of our ongoing Wolf-Rayet (WR) Magellanic Cloud survey, we have discovered 13 new WRs. However, the most exciting outcome of our survey is not the number of new WRs, but their unique characteristics. Eight of our discoveries appear to belong to an entirely new class of WRs. While one might naively classify these stars as WN3+O3V binaries, such a pairing is unlikely. Preliminary CMFGN modeling suggests physical parameters similar to early-type WNs in the Large Magellanic Cloud except with mass-loss rates three to five times lower and slightly higher temperatures. The evolution status of these stars remains an open question.}, language = {en} } @article{BeckerBomansWeis2015, author = {Becker, Andrew C. and Bomans, Dominik J. and Weis, K.}, title = {Finding new Wolf-Rayet stars in the Magellanic Clouds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87618}, pages = {47 -- 50}, year = {2015}, abstract = {Obtaining a complete census of massive, evolved stars in a galaxy would be a key ingredient for testing stellar evolution models. However, as the evolution of stars is also strongly dependent on their metallicity, it is inevitable to have this kind of data for a variety of galaxies with different metallicities. Between 2009 and 2011, we conducted the Magellanic Clouds Massive Stars and Feedback Survey (MSCF); a spatially complete, multi-epoch, broad- and narrow-band optical imaging survey of the Large and Small Magellanic Clouds. With the inclusion of shallow images, we are able to give a complete photometric catalog of stars between B ≈ 18 and B ≈ 19 mag. These observations were augmented with additional photometric data of similar spatial res- olution from UV to IR (e.g. from GALEX, 2MASS and Spitzer) in order to sample a large portion of the spectral energy distribution of the brightest stars (B < 16 mag) in the Magel- lanic Clouds. Using these data, were are able to train a machine learning algorithm that gives us a good estimate of the spectral type of tens of thousands of stars. This method can be applied to the search for Wolf-Rayet-Stars to obtain a sample of candi- dates for follow-up observations. As this approach can, in principle, be adopted for any resolved galaxy as long as sufficient photometric data is available, it can form an effective alternative method to the classical strategies (e.g. He II filter imaging).}, language = {en} } @article{RussellCorcoranCuadraetal.2015, author = {Russell, C. M. P. and Corcoran, M. F. and Cuadra, J. and Owocki, S. P. and Wang, Q. D. and Hamaguchi, K. and Sugawara, Y. and Pollock, A. M. T. and Kallman, T. R.}, title = {Hydrodynamic and radiative transfer modeling of X-ray emission from colliding WR winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88255}, pages = {309 -- 312}, year = {2015}, abstract = {Colliding Wolf-Rayet (WR) winds produce thermal X-ray emission widely observed by X-ray telescopes. In wide WR+O binaries, such as WR 140, the X-ray flux is tied to the orbital phase, and is a direct probe of the winds' properties. In the Galactic center, ~30 WRs orbit the super massive black hole (SMBH) within ~10", leading to a smorgasbord of wind-wind collisions. To model the X-ray emission of WR 140 and the Galactic center, we perform 3D hydrodynamic simulations to trace the complex gaseous flows, and then carry out 3D radiative transfer calculations to compute the variable X-ray spectra. The model WR 140 RXTE light curve matches the data well for all phases except the X-ray minimum associated with periastron, while the model spectra agree with the RXTE hardness ratio and the shape of the Suzaku observations throughout the orbit. The Galactic center model of the Chandra flux and spectral shape match well in the region r ≤ 3", but the model flux falls off too rapidly beyond this radius.}, language = {en} } @article{SokalJohnsonMasseyetal.2015, author = {Sokal, K. R. and Johnson, K. E. and Massey, P. and Indebetouw, R.}, title = {The importance of Wolf-Rayet ionization and feedback on super star cluster evolution}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88325}, pages = {337 -- 340}, year = {2015}, abstract = {The feedback from massive stars is important to super star cluster (SSC) evolution and the timescales on which it occurs. SSCs form embedded in thick material, and eventually, the cluster is cleared out and revealed at optical wavelengths - however, this transition is not well understood. We are investigating this critical SSC evolutionary transition with a multi-wavelength observational campaign. Although previously thought to appear after the cluster has fully removed embedding natal material, we have found that SSCs may host large populations of Wolf-Rayet stars. These evolved stars provide ionization and mechanical feedback that we hypothesize is the tipping point in the combined feedback processes that drive a SSC to emerge. Utilizing optical spectra obtained with the 4m Mayall Telescope at Kitt Peak National Observatory and the 6.5m MMT, we have compiled a sample of embedded SSCs that are likely undergoing this short-lived evolutionary phase and in which we confirm the presence of Wolf-Rayet stars. Early results suggest that WRs may accelerate the cluster emergence.}, language = {en} } @article{MesaDelgadoEstebanGarciaRojas2015, author = {Mesa-Delgado, A. and Esteban, C. and Garc{\´i}a-Rojas, J.}, title = {Ring Nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88299}, pages = {325 -- 328}, year = {2015}, abstract = {Preliminary results are presented from spectroscopic data in the optical range of the Galactic ring nebulae NGC 6888, G2:4+1:4, RCW 58 and Sh2-308. Deep observations with long exposure times were carried out at the 6.5m Clay Telescope and at the 10.4m Gran Telescopio Canarias. In NGC 6888, recombination lines of C ii, O ii and N ii are detected with signal-to-noise ratios higher than 8. The chemical content of NGC 6888 is discussed within the chemical enrichment predicted by evolution models of massive stars. For all nebulae, a forthcoming work will content in-depth details about observations, analysis and final results (Esteban et al. 2015, in prep.).}, language = {en} } @article{Conti2015, author = {Conti, P. S.}, title = {Concluding Remarks}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88347}, pages = {347 -- 350}, year = {2015}, abstract = {Selected remarks concerning Wolf-Rayet (W-R) stars in the framework of this workshop are given. The rich history of international conferences over the past four or so decades is summarized, important issues concerning W-R stars are considered, and some outstanding problems are reviewed.}, language = {en} } @article{CalderonBalloneCuadraetal.2015, author = {Calder{\´o}n, D. and Ballone, A. and Cuadra, J. and Schartmann, M. and Burkert, Andreas and Gillessen, S.}, title = {Formation of the infalling Galactic Centre cloud G2 by collision of stellar winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88412}, pages = {356}, year = {2015}, abstract = {The gas cloud G2 is currently being tidally disrupted by the Galactic Centre super-massive black hole, Sgr A*. The region around the black hole is populated by ∼ 30 Wolf-Rayet stars, which produce strong outflows. Here we explore the possibility that gas clumps like G2 originate from the collision of stellar winds via the non-linear thin shell instability.}, language = {en} } @article{KochiashviliBeradzeKochiashvilietal.2015, author = {Kochiashvili, N. and Beradze, S. and Kochiashvili, I. and Natsvlishvili, R. and Vardosanidze, M.}, title = {New Photometric Observations of P Cygni}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88452}, pages = {360}, year = {2015}, abstract = {We present the results of the new photometric observations of the famous hypergiant PCygni. New observations were obtained in 2014 using the 48 cm Cassegrain telescope of the Abastumani Astrophysical Observatory, Georgia. We reveal some interesting behaviors of the B,V,R,I light curves, and also report new results on the periodicity of PCygni's variation. The latter result is based on the analysis of the photometric data (U,B,V filters) collected at the Abastumani Observatory between 1937 and 1983.}, language = {en} } @article{MaryevaPolcaroRossietal.2015, author = {Maryeva, O. and Polcaro, V. F. and Rossi, C. and Viotti, R.}, title = {Modeling of spectral variability of Romano's star}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88462}, pages = {361}, year = {2015}, abstract = {We present results of investigation of spectral variability of one of the most interesting massive stars, Romano's star (M33/V532 or GR290), located in the M33 galaxy. Brightness of the star changes together with its spectral class, which varies from WN11 to WN8. Using CMFGEN code we estimated parameters of stellar atmosphere and found that during last ten years bolometric luminosity of the star changed synchronously with stellar magnitude. Our calculations argue in favor of the hypothesis of a post-LBV status of GR290.}, language = {en} } @article{Dessart2015, author = {Dessart, L.}, title = {Wolf-Rayet stars as supernova progenitors}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88133}, pages = {245 -- 250}, year = {2015}, abstract = {In this review, I discuss the suitability of massive star progenitors, evolved in isolation or in interacting binaries, for the production of observed supernovae (SNe) IIb, Ib, Ic. These SN types can be explained through variations in composition. The critical need of non-thermal effects to produce He I lines favours low-mass He-rich ejecta (in which ^56 Ni can be more easily mixed with He) for the production of SNe IIb/Ib, which thus may arise preferentially from moderate-mass donors in interacting binaries. SNe Ic may instead arise from higher mass progenitors, He-poor or not, because their larger CO cores prevent efficient non-thermal excitation of He i lines. However, current single star evolution models tend to produce Wolf-Rayet (WR) stars at death that have a final mass of > 10 M⊙. Single WR star explosion models produce ejecta that are too massive to match the observed light curve widths and rise times of SNe IIb/Ib/Ic, unless their kinetic energy is systematically and far greater than the canonical value of 10^56 erg. Future work is needed to evaluate the energy/mass degeneracy in light curve properties. Alternatively, a greater mass loss during the WR phase, perhaps in the form of eruptions, as evidenced in SNe Ibn, may reduce the final WR mass. If viable, such explosions would nonetheless favour a SN Ic, not a Ib.}, language = {en} } @article{MiszalskiManickMcBride2015, author = {Miszalski, B. and Manick, R. and McBride, V.}, title = {Post-common-envelope Wolf-Rayet central stars of planetary nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88156}, pages = {259 -- 262}, year = {2015}, abstract = {Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN G222.8-04.2 and NGC 5189 have post-CE CSPNe with a Wolf-Rayet star primary (denoted [WR]), the low-mass analogues of massive Wolf-Rayet stars. It is not well understood how H-deficient [WR] CSPNe form, even though they are relatively common, appearing in over 100 PNe. The discovery and characterisation of post-CE [WR] CSPNe is essential to determine whether proposed binary formation scenarios are feasible to explain this enigmatic class of stars. The existence of post-CE [WR] binaries alone suggests binary mergers are not necessarily a pathway to form [WR] stars. Here we give an overview of the initial results of a radial velocity monitoring programme of [WR] CSPNe to search for new binaries. We discuss the motivation for the survey and the associated strong selection effects. The mass functions determined for PN G222.8-04.2 and NGC 5189, together with literature photometric variability data of other [WR] CSPNe, suggest that of the post-CE [WR] CSPNe yet to be found, most will have WD or subdwarf O/B-type companions in wider orbits than typical post-CE CSPNe (several days or months c.f. less than a day).}, language = {en} } @article{Cherchneff2015, author = {Cherchneff, I.}, title = {Dust formation in carbon-rich Wolf-Rayet colliding winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88177}, pages = {269 -- 274}, year = {2015}, abstract = {Carbon-rich Wolf-Rayet stars are efficient carbon dust makers. Despite the strong evidence for dust formation in these objects provided by infrared thermal emission from dust, the routes to nucleation and condensation and the physical conditions required for dust production are still poorly understood. We discuss here the potential routes to carbon dust and the possible locations conducive to dust formation in the colliding winds of WC binaries.}, language = {en} } @article{WilliamsvanderHucht2015, author = {Williams, P. M. and van der Hucht, K. A.}, title = {The colliding-wind WC9+OB system WR 65 and dust formation by WR stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88188}, pages = {275 -- 278}, year = {2015}, abstract = {Observations of the WC9+OB system WR65 in the infrared show variations of its dust emission consistent with a period near 4.8 yr, suggesting formation in a colliding-wind binary (CWB) having an elliptical orbit. If we adopt the IR maximum as zero phase, the times of X-ray maximum count and minimum extinction to the hard component measured by Oskinova \& Hamann fall at phases 0.4-0.5, when the separation of the WC9 and OB stars is greatest. We consider WR65 in the context of other WC8-9+OB stars showing dust emission.}, language = {en} } @article{PabloMoffat2015, author = {Pablo, H. and Moffat, Anthony F. J.}, title = {WR Time Series Photometry}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88031}, pages = {205 -- 208}, year = {2015}, abstract = {We take a comprehensive look at Wolf Rayet photometric variability using the MOST satellite. This sample, consisting of 6 WR stars and 6 WC stars defies all typical photometric analysis. We do, however, confirm the presence of unusual periodic signals resembling sawtooth waves which are present in 11 out of 12 stars in this sample.}, language = {en} } @article{LangerSanyalGrassitellietal.2015, author = {Langer, N. and Sanyal, D. and Grassitelli, L. and Sz{\´e}sci, D.}, title = {The stellar Eddington limit}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88121}, pages = {241 -- 244}, year = {2015}, abstract = {It is often assumed that when stars reach their Eddington limit, strong outflows are initiated, and that this happens only for extreme stellar masses. We discuss here that in models of up to 500 M⊙, the Eddington limit is never reached at the stellar surface. Instead, we argue that the Eddington limit is reached inside the stellar envelope in hydrogen-rich stars above ∼ 30 M⊙ and in Wolf-Rayet stars above ∼ 7 M⊙, with drastic effects for their struture and stability.}, language = {en} } @article{HendrixKeppens2015, author = {Hendrix, T. and Keppens, R.}, title = {Modelling colliding wind binaries in 2D}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88198}, pages = {279 -- 282}, year = {2015}, abstract = {We look at how the dynamics of colliding wind binaries (CWB) can be investigated in 2D, and how several parameters influence the dynamics of the small scale structures inside the colliding wind and the shocked regions, as well as in how the dynamics influence the shape of the collision region at large distances. The parameters we adopt are based on the binary system WR98a, one of the few Wolf-Rayet (WR) dusty pinwheels known.}, language = {en} } @article{Groh2015, author = {Groh, J. H.}, title = {The end stages of massive star evolution}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88115}, pages = {237 -- 240}, year = {2015}, abstract = {The morphological appearance of massive stars across their post-Main Sequence evolution and before the SN event is very uncertain, both from a theoretical and observational perspective. We recently developed coupled stellar evolution and atmospheric modeling of stars done with the Geneva and CMFGEN codes, for initial masses between 9 and 120 M⊙. We are able to predict the observables such as the high-resolution spectrum and broadband photometry. Here I discuss how the spectrum of a massive star changes across its evolution and before death, with focus on the WR stage. Our models indicate that single stars with initial masses larger than 30 M⊙ end their lives as WR stars. Depending on rotation, the spectrum of the star can either be that of a WN or WO subtype at the pre-SN stage. Our models allow, for the first time, direct comparison between predictions from stellar evolution models and observations of SN progenitors.}, language = {en} } @article{Gull2015, author = {Gull, T. R.}, title = {Eta Carinae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87876}, pages = {149 -- 154}, year = {2015}, abstract = {Since Augusto Damineli's demonstration in 1996 that Eta Carinae is a binary with a 5.52 year period, many innovative observations and increasingly advanced three-dimensional models have led to considerable insight on this massive system that ejected at least ten, possibly forty, solar masses in the nineteenth century. Here we present a review of our current understanding of this complex system and point out continuing puzzles.}, language = {en} } @article{MeynetGeorgyMaederetal.2015, author = {Meynet, G. and Georgy, C. and Maeder, A. and Ekstr{\"o}m, S. and Groh, J. H. and Barblan, F. and Song, H. F. and Eggenberger, P.}, title = {Physics of massive stars relevant for the modeling of Wolf-Rayet populations}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87971}, pages = {183 -- 188}, year = {2015}, abstract = {Key physical ingredients governing the evolution of massive stars are mass losses, convection and mixing in radiative zones. These effects are important both in the frame of single and close binary evolution. The present paper addresses two points: 1) the differences between two families of rotating models, i.e. the family of models computed with and without an efficient transport of angular momentum in radiative zones; 2) The impact of the mass losses in single and in close binary models.}, language = {en} } @article{Morris2015, author = {Morris, P. W.}, title = {Measuring η Carinae's High Mass Ejecta in the Infrared and Sub-millimeter}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87895}, pages = {155 -- 158}, year = {2015}, abstract = {I address uncertainties on the spatial distribution and mass of the dust formed in η Carinae's Homunculus nebula with data being combined from several space- and ground-based facilities spanning near-infrared to sub-mm wavelengths, in terms of observational constraints and modeling. Until these aspects are better understood, the mass loss history and mechanisms responsible for η Car's enormous eruption(s) remain poorly constrained.}, language = {en} } @article{Vink2015, author = {Vink, J. S.}, title = {The True origin of Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87848}, pages = {133 -- 138}, year = {2015}, abstract = {The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn into an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures (Tₑff), (iii) an increase in the helium abundance (Y ), and finally (iv) the Eddington factor Γₑ. Over the last couple of years, we have made a breakthrough in our understanding of Γₑ -dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Lyα and He ii emitting galaxies.}, language = {en} } @article{MaduraClementelGulletal.2015, author = {Madura, T. I. and Clementel, N. and Gull, T. R. and Kruip, C. J. H. and Paardekooper, J.-P. and Icke, V.}, title = {3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87930}, pages = {163 -- 166}, year = {2015}, abstract = {We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.}, language = {en} } @article{KourniotisBonanosNajarro2015, author = {Kourniotis, M. and Bonanos, A. and Najarro, F.}, title = {Accurate parameters of massive binaries in the Danks clusters}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87819}, pages = {121 -- 124}, year = {2015}, abstract = {We present results from our near-infrared spectroscopy with VLT/ISAAC of four, massive eclipsing binary systems in the young, heavily reddened, massive Danks clusters. We derive accurate fundamental parameters and the distance to these massive systems, which comprise of OIf+, WR and O-type stars. Our goal is to increase the sample of well-studied WR stars and constrain their physics by comparison with evolutionary models.}, language = {en} } @article{Liermann2015, author = {Liermann, A.}, title = {Evolution of Wolf-Rayet spectra}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87830}, pages = {129 -- 132}, year = {2015}, abstract = {Wolf-Rayet stars are important sources for the enrichment of the ISM with nuclear processed elements, UV photons and momentum. They are descendants of high-mass stars for which short lifetimes and transition times can hamper the spectral classification of the stars in their different evolutionary phases. The expanded stellar atmospheres of Wolf-Rayet stars can show spectra which seem inconsistent with the anticipated underlying evolution phase, for example in late hydrogen-burning WN stars and Of/WN transition stars. We present a sequence of synthetic spectra of the Potsdam Wolf-Rayet models based on the latest Geneva stellar evolution models. This will visualize the changes in stellar spectra over a full stellar lifetime. Direct comparison with observed stellar spectra, as well as the evolution of diagnostic line ratios will improve the connection of spectral classification and evolution phase.}, language = {en} } @article{Koenigsberger2015, author = {Koenigsberger, C.}, title = {HD5980}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87954}, pages = {171 -- 174}, year = {2015}, abstract = {HD5980 is a multiple system containing at least 3 very massive and luminous stars. Located in the Small Magellanic Cloud, it is an ideal system for studying the massive star structure and evolutionary processes in low-metallicity environments. Intensely observed over the past few decades, HD5980 is a treasure trove of information on stellar wind structure, on wind-wind collisions and on the formation of wind-blown circumstellar structures. In addition, its characteristics suggest that the eclipsing WR+LBV stars of the system are the product of quasihomogeneous chemical evolution, thus making them candidate pair production supernovae or GRB progenitors. This paper summarizes some of the outstanding results derived from half a century of observations and recent theoretical studies.}, language = {en} } @article{RamirezAlegriaCheneBorissovaetal.2015, author = {Ram{\´i}rez Alegr{\´i}a, S. and Chen{\´e}, A.-N. and Borissova, J. and Kurtev, R. and Navarro, C. and Kuhn, M. and Carballo-Bello, J. A.}, title = {A not so massive cluster hosting a very massive star}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88477}, pages = {362}, year = {2015}, abstract = {We present the first physical characterization of the young open cluster VVVCL041. We spectroscopically observed the cluster main-sequence stellar population and a very-massive star candidate: WR62-2. CMFGEN modelling to our near-infrared spectra indicates that WR62-2 is a very luminous (10^6.4±0.2 L⊙)and massive (∼ 80M⊙) star.}, language = {en} } @article{RoMatzner2015, author = {Ro, S. and Matzner, C. D.}, title = {Envelope Inflation or Stellar Wind?}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88491}, pages = {364}, year = {2015}, abstract = {We an optically-thick, transonic, steady wind model for a H-free Wolf-Rayet star. A bifurcation is found across a critical mass loss rate Mb. Slower winds M < Mb extend by several hydrostatic stellar radii, reproduce features of envelope in ation from Petrovic et al. (2006) and Gr{\"a}fener et al. (2012), and are energetically unbound. This work is of particular interest for extended envelopes and winds, radiative hydrodynamic instabilities (eg. wind stagnation, clumping, etc.), and NLTE atmospheric models.}, language = {en} } @article{BeradzeKochiashviliNatsvlishvilietal.2015, author = {Beradze, S. and Kochiashvili, N. and Natsvlishvili, R. and Kochiashvili, I. and Janiashvili, E. and Urushadze, T. and Vardosanidze, M.}, title = {P Cygni and its Observations at the Abastumani Observatory}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88389}, pages = {353}, year = {2015}, abstract = {We found original observations of PCygni by E. Kharadze and N. Magalashvili in the archives of the Abastumani Observatory. These observations were carried out in the period 1951-1983. Initially they used 29 Cygni as a comparison star, and all observations of PCygni were processed using this star. On the basis of their calculations, the authors decided that PCygni may be a WUMa type binary with an orbital period of 0.500565 d, but this hypothesis was not confirmed. The only observations that have been published in the Bulletin of the Abastumani Astrophysical Observatory were those of of 1951-1955. There are whole sets of observational data not only for PCygni and 29 Cygni, but in the majority of cases also for 36 Cygni in the archives. We recalculated all data (where it was possible) using 36 Cygni as a comparison star. We are presenting UBV light curves of the variable, and also observations made by V. Nikonov in Abastumani in the period 1935-1937}, language = {en} } @article{SzecsiLangerSanyaletal.2015, author = {Sz{\´e}csi, D. and Langer, N. and Sanyal, D. and Evans, C. J. and Bestenlehner, J. M. and Raucq, F.}, title = {Do rapidly-rotating massive stars at low metallicity form Wolf-Rayet stars?}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87997}, pages = {189 -- 192}, year = {2015}, abstract = {The evolution of massive stars is strongly influenced by their initial chemical composition. We have computed rapidly-rotating massive star models with low metallicity (∼1/50 Z⊙) that evolve chemically homogeneously and have optically-thin winds during the main sequence evolution. These luminous and hot stars are predicted to emit intense mid- and far-UV radiation, but without the broad emission lines that characterize WR stars with optically-thick winds. We show that such Transparent Wind UV-Intense (TWUIN) stars may be responsible for the high number of He ii ionizing photons observed in metal-poor dwarf galaxies, such as IZw 18. We find that these TWUIN stars are possible long-duration gamma-ray burst progenitors.}, language = {en} } @misc{ThielRomanoKurthsetal.2006, author = {Thiel, Marco and Romano, Maria Carmen and Kurths, J{\"u}rgen and Rolfs, Martin}, title = {Twin Surrogates to Test for Complex Synchronisation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57231}, year = {2006}, abstract = {We present an approach to generate (multivariate) twin surrogates (TS) based on recurrence properties. This technique generates surrogates which correspond to an independent copy of the underlying system, i. e. they induce a trajectory of the underlying system starting at different initial conditions. We show that these surrogates are well suited to test for complex synchronisation and exemplify this for the paradigmatic system of R¨ossler oscillators. The proposed test enables to assess the statistical relevance of a synchronisation analysis from passive experiments which are typical in natural systems.}, language = {en} } @article{ReyesIturbideVelazquezRosado2015, author = {Reyes-Iturbide, J. and Vel{\´a}zquez, Pablo F. and Rosado, M.}, title = {3D numerical model for NGC 6888 Nebula}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88485}, pages = {363}, year = {2015}, abstract = {We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.}, language = {en} } @article{ToalaGuerreroChuetal.2015, author = {Toal{\´a}, Jes{\´u}s Alberto and Guerrero, Mart{\´i}n A. and Chu, Y.-H. and Arthur, S. J. and Gruendl, R. A.}, title = {Diffuse X-ray Emission within Wolf-Rayet Nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88316}, pages = {333 -- 336}, year = {2015}, abstract = {We discuss our most recent findings on the diffuse X-ray emission within Wolf-Rayet (WR) nebulae. The best-quality X-ray observations of these objects are those performed by XMM- Newton and Chandra towards S 308, NGC 2359, and NGC 6888. Even though these three WR nebulae might have different formation scenarios, they all share similar characteristics: i) the main plasma temperatures of the X-ray-emitting gas is found to be T =[1-2]×^K, ii) the diffuse X-ray emission is confined inside the [O iii] shell, and iii) their X-ray luminosities and electron densities in the 0.3-2.0 keV energy range are LX ≈10^33-10^34 erg s-1 and ne ≈0.1-1 cm^-3 . These properties and the nebular-like abundances of the hot gas suggest mixing and/or thermal conduction is taking an important r{\^o}le reducing the temperature of the hot bubble.}, language = {en} } @article{Guerrero2015, author = {Guerrero, Mart{\´i}n A.}, title = {Planetary nebulae and Their Central Stars in X-rays}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88160}, pages = {263 -- 266}, year = {2015}, abstract = {Two types of X-ray sources are mostly found in planetary nebulae (PNe): point sources at their central stars and diffuse emission inside hot bubbles. Here we describe these two types of sources based on the most recent observations obtained in the framework of the Chandra Planetary Nebula Survey, ChanPlaNS, an X-ray survey targeting a volume-limited sample of PNe. Diffuse X-ray emission is found preferentially in young PNe with sharp, closed inner shells. Point sources of X-ray emission at the central stars reveal magnetically active binary companions and shock-in stellar winds.}, language = {en} } @article{GomezGonzalezMayyaRosaGonzalez2015, author = {G{\´o}mez-Gonz{\´a}lez, V{\´i}ctor Mauricio Alfonso and Mayya, Yalia Divakara and Rosa-Gonz{\´a}lez, D.}, title = {Detection and Characterization of Wolf-Rayet stars in M81 with GTC/OSIRIS spectra and HST images}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87604}, pages = {43 -- 46}, year = {2015}, abstract = {Here we investigate a sample of young star clusters (YSCs) and other regions of recent star formation with Wolf-Rayet (W-R) features detected in the relatively nearby spiral galaxy M81 by analysing long-slit (LS) and Multi-Object Spectroscopy (MOS) spectra obtained with the OSIRIS instrument at the 10.4-m Gran Telescopio Canarias (GTC). We take advantage of the synergy between GTC spectra and Hubble Space Telescope (HST) images to also reveal their spatial localization and the environments hosting these stars. We finally discuss and comment on the next steps of our study.}, language = {en} } @phdthesis{Inal2013, author = {Inal, Sahika}, title = {Responsive polymers for optical sensing applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70806}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {LCST-type synthetic thermoresponsive polymers can reversibly respond to certain stimuli in aqueous media with a massive change of their physical state. When fluorophores, that are sensitive to such changes, are incorporated into the polymeric structure, the response can be translated into a fluorescence signal. Based on this idea, this thesis presents sensing schemes which transduce the stimuli-induced variations in the solubility of polymer chains with covalently-bound fluorophores into a well-detectable fluorescence output. Benefiting from the principles of different photophysical phenomena, i.e. of fluorescence resonance energy transfer and solvatochromism, such fluorescent copolymers enabled monitoring of stimuli such as the solution temperature and ionic strength, but also of association/disassociation mechanisms with other macromolecules or of biochemical binding events through remarkable changes in their fluorescence properties. For instance, an aqueous ratiometric dual sensor for temperature and salts was developed, relying on the delicate supramolecular assembly of a thermoresponsive copolymer with a thiophene-based conjugated polyelectrolyte. Alternatively, by taking advantage of the sensitivity of solvatochromic fluorophores, an increase in solution temperature or the presence of analytes was signaled as an enhancement of the fluorescence intensity. A simultaneous use of the sensitivity of chains towards the temperature and a specific antibody allowed monitoring of more complex phenomena such as competitive binding of analytes. The use of different thermoresponsive polymers, namely poly(N-isopropylacrylamide) and poly(meth)acrylates bearing oligo(ethylene glycol) side chains, revealed that the responsive polymers differed widely in their ability to perform a particular sensing function. In order to address questions regarding the impact of the chemical structure of the host polymer on the sensing performance, the macromolecular assembly behavior below and above the phase transition temperature was evaluated by a combination of fluorescence and light scattering methods. It was found that although the temperature-triggered changes in the macroscopic absorption characteristics were similar for these polymers, properties such as the degree of hydration or the extent of interchain aggregations differed substantially. Therefore, in addition to the demonstration of strategies for fluorescence-based sensing with thermoresponsive polymers, this work highlights the role of the chemical structure of the two popular thermoresponsive polymers on the fluorescence response. The results are fundamentally important for the rational choice of polymeric materials for a specific sensing strategy.}, language = {en} } @inproceedings{OskinovaHamannFeldmeier2007, author = {Oskinova, Lidia M. and Hamann, Wolf-Rainer and Feldmeier, Achim}, title = {X-raying clumped stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18133}, year = {2007}, abstract = {X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging Xray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if the wind clumps are radially compressed. In massive binaries the orbital variations of X-ray emission allow to probe the opacity of the stellar wind; results support the picture of strong wind clumping. In high-mass X-ray binaries, the stochastic X-ray variability and the extend of the stellar-wind part photoionized by X-rays provide further strong evidence that stellar winds consist of dense clumps.}, language = {en} } @inproceedings{FeldmeierHamannRaetzeletal.2007, author = {Feldmeier, Achim and Hamann, Wolf-Rainer and R{\"a}tzel, D. and Oskinova, Lidia M.}, title = {Hydrodynamic simulations of clumps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17975}, year = {2007}, abstract = {Clumps in hot star winds can originate from shock compression due to the line driven instability. One-dimensional hydrodynamic simulations reveal a radial wind structure consisting of highly compressed shells separated by voids, and colliding with fast clouds. Two-dimensional simulations are still largely missing, despite first attempts. Clumpiness dramatically affects the radiative transfer and thus all wind diagnostics in the UV, optical, and in X-rays. The microturbulence approximation applied hitherto is currently superseded by a more sophisticated radiative transfer in stochastic media. Besides clumps, i.e. jumps in the density stratification, so-called kinks in the velocity law, i.e. jumps in dv/dr, play an eminent role in hot star winds. Kinks are a new type of radiative-acoustic shock, and propagate at super-Abbottic speed.}, language = {en} } @inproceedings{HamannOskinovaFeldmeier2007, author = {Hamann, Wolf-Rainer and Oskinova, Lidia M. and Feldmeier, Achim}, title = {Spectrum formation in clumpy stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17838}, year = {2007}, abstract = {Modeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies ("microclumping"). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps ("macroclumping"). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on their optical thickness. The recently reported discrepancy between the Hα diagnostic and the Pv resonance lines in O star spectra can be resolved without decreasing the mass-loss rates, when macroclumping is taken into account.}, language = {en} } @article{MohamedMackeyLangeretal.2015, author = {Mohamed, S. and Mackey, J. and Langer, N. and Podsiadlowski, Philipp}, title = {Shaping the outflows of Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88200}, pages = {283 -- 288}, year = {2015}, abstract = {Wolf-Rayet (WR) stars lose copious amounts of mass and momentum through dense stellar winds. The interaction of these outflows with their surroundings results in highly structured and complex circumstellar environments, often featuring knots, arcs, shells and spirals. Recent improvements in computational power and techniques have led to the development of detailed, multi-dimensional simulations that have given new insight into the origin of these structures, and better understanding of the physical mechanisms driving their formation. We review three of the main mechanisms that shape the outflows of WR stars: • interaction with the interstellar medium (ISM), i.e., wind-ISM interactions; • interaction with a stellar wind, either from a previous phase of evolution or the wind from a companion star, i.e., wind-wind interactions; • and interaction with a companion star that has a weak or insignificant outflow (e.g., a compact companion such as a neutron star or black hole), i.e.,wind-companion interactions. We also highlight the broader implications and impact of these circumstellar structures for related phenomena, e.g., for X-ray binaries and Gamma-ray bursts.}, language = {en} } @unpublished{EngbertScheffczykKrampeetal.1997, author = {Engbert, Ralf and Scheffczyk, Christian and Krampe, Ralf-Thomas and Rosenblum, Mikhael and Kurths, J{\"u}rgen and Kliegl, Reinhold}, title = {Tempo-induced transitions in polyrhythmic hand movements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14380}, year = {1997}, abstract = {We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.}, language = {en} } @misc{ThielRomanoKurthsetal.2006, author = {Thiel, Marco and Romano, Maria Carmen and Kurths, J{\"u}rgen and Rolfs, Martin and Kliegl, Reinhold}, title = {Generating Surrogates from Recurrences}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56906}, year = {2006}, abstract = {In this paper we present an approach to recover the dynamics from recurrences of a system and then generate (multivariate) twin surrogate (TS) trajectories. In contrast to other approaches, such as the linear-like surrogates, this technique produces surrogates which correspond to an independent copy of the underlying system, i. e. they induce a trajectory of the underlying system visiting the attractor in a different way. We show that these surrogates are well suited to test for complex synchronization, which makes it possible to systematically assess the reliability of synchronization analyses. We then apply the TS to study binocular fixational movements and find strong indications that the fixational movements of the left and right eye are phase synchronized. This result indicates that there might be one centre only in the brain that produces the fixational movements in both eyes or a close link between two centres.}, language = {en} } @phdthesis{Jaiser2013, author = {Jaiser, Ralf}, title = {Dreidimensionale Diagnostik der großskaligen Zirkulation der Tropo- und Stratosph{\"a}re}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69064}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In dieser Arbeit werden Konzepte f{\"u}r die Diagnostik der großskaligen Zirkulation in der Troposph{\"a}re und Stratosph{\"a}re entwickelt. Der Fokus liegt dabei auf dem Energiehaushalt, auf der Wellenausbreitung und auf der Interaktion der atmosph{\"a}rischen Wellen mit dem Grundstrom. Die Konzepte werden hergeleitet, wobei eine neue Form des lokalen Eliassen-Palm-Flusses unter Einbeziehung der Feuchte eingef{\"u}hrt wird. Angewendet wird die Diagnostik dann auf den Reanalysedatensatz ERA-Interim und einen durch beobachtete Meerestemperatur- und Eisdaten angetriebenen Lauf des ECHAM6 Atmosph{\"a}renmodells. Die diagnostischen Werkzeuge zur Analyse der großskaligen Zirkulation sind einerseits n{\"u}tzlich, um das Verst{\"a}ndnis der Dynamik des Klimasystems weiter zu f{\"o}rdern. Andererseits kann das gewonnene Verst{\"a}ndnis des Zusammenhangs von Energiequellen und -senken sowie deren Verkn{\"u}pfung mit synoptischen und planetaren Wellensystemen und dem resultierenden Antrieb des Grundstroms auch verwendet werden, um Klimamodelle auf die korrekte Wiedergabe dieser Beobachtungen zu pr{\"u}fen. Hier zeigt sich, dass die Abweichungen im untersuchten ECHAM6-Modelllauf bez{\"u}glich des Energiehaushalts klein sind, jedoch teils starke Abweichungen bez{\"u}glich der Ausbreitung von atmosph{\"a}rischen Wellen existieren. Planetare Wellen zeigen allgemein zu große Intensit{\"a}ten in den Eliassen-Palm-Fl{\"u}ssen, w{\"a}hrend innerhalb der Strahlstr{\"o}me der oberen Troposph{\"a}re der Antrieb des Grundstroms durch synoptische Wellen verf{\"a}lscht ist, da deren vertikale Ausbreitung gegen{\"u}ber den Beobachtungen verschoben ist. Untersucht wird auch der Einfluss von arktischen Meereis{\"a}nderungen ausgehend vom Bedeckungsminimum im August/September bis in den Winter. Es werden starke positive Temperaturanomalien festgestellt, welche an der Oberfl{\"a}che am gr{\"o}ßten sind. Diese f{\"u}hren vor allem im Herbst zur Intensivierung von synoptischen Systemen in den arktischen Breiten, da die Stabilit{\"a}t der troposph{\"a}rischen Schichtung verringert ist. Im darauffolgenden Winter stellen sich barotrope bis in die Stratosph{\"a}re reichende {\"A}nderungen der großskaligen Zirkulation ein, welche auf Meereis{\"a}nderungen zur{\"u}ckzuf{\"u}hren sind. Der meridionale Druckgradient sinkt und f{\"u}hrt so zu einem Muster {\"a}hnlich einer negativen Phase der arktischen Oszillation in der Troposph{\"a}re und einem geschw{\"a}chten Polarwirbel in der Stratosph{\"a}re. Diese Zusammenh{\"a}nge werden ebenfalls in einem ECHAM6-Modelllauf untersucht, wobei vor allem der Erw{\"a}rmungstrend in der Arktis zu gering ist. Die großskaligen Ver{\"a}nderungen im Winter k{\"o}nnen zum Teil auch im Modelllauf festgestellt werden, jedoch zeigen sich insbesondere in der Stratosph{\"a}re Abweichungen f{\"u}r die Periode mit der geringsten Eisausdehnung. Die vertikale Ausbreitung planetarer Wellen von der Troposph{\"a}re in die Stratosph{\"a}re ist in ECHAM6 mit sehr großen Abweichungen wiedergegeben. Somit stellt die Wellenausbreitung insgesamt den gr{\"o}ßten in dieser Arbeit festgestellten Mangel in ECHAM6 dar.}, language = {de} } @phdthesis{Schick2013, author = {Schick, Daniel}, title = {Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68827}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects.}, language = {en} }