@misc{LomadzeKopyshevBargheeretal.2017, author = {Lomadze, Nino and Kopyshev, Alexey and Bargheer, Matias and Wollgarten, Markus and Santer, Svetlana}, title = {Mass production of polymer nanowires filled with metal nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402712}, pages = {10}, year = {2017}, abstract = {Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.}, language = {en} } @misc{MakwanaYan2020, author = {Makwana, Kirit D. and Yan, Huirong}, title = {Properties of magnetohydrodynamic modes in compressively driven plasma turbulence}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {10}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, publisher = {American Physical Society (APS)}, address = {College Park}, issn = {1866-8372}, doi = {10.25932/publishup-53160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-531607}, pages = {17}, year = {2020}, abstract = {We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed.}, language = {en} } @misc{MannRahmstorfKornhuberetal.2018, author = {Mann, Michael E. and Rahmstorf, Stefan and Kornhuber, Kai and Steinman, Byron A. and Miller, Sonya K. and Petri, Stefan and Coumou, Dim}, title = {Projected changes in persistent extreme summer weather events}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {994}, issn = {1866-8372}, doi = {10.25932/publishup-44641}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446416}, pages = {12}, year = {2018}, abstract = {Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50\% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events.}, language = {en} } @misc{MardoukhiChechkinMetzler2020, author = {Mardoukhi, Yousof and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Spurious ergodicity breaking in normal and fractional Ornstein-Uhlenbeck process}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {981}, issn = {1866-8372}, doi = {10.25932/publishup-47487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474875}, pages = {20}, year = {2020}, abstract = {The Ornstein-Uhlenbeck process is a stationary and ergodic Gaussian process, that is fully determined by its covariance function and mean. We show here that the generic definitions of the ensemble- and time-averaged mean squared displacements fail to capture these properties consistently, leading to a spurious ergodicity breaking. We propose to remedy this failure by redefining the mean squared displacements such that they reflect unambiguously the statistical properties of any stochastic process. In particular we study the effect of the initial condition in the Ornstein-Uhlenbeck process and its fractional extension. For the fractional Ornstein-Uhlenbeck process representing typical experimental situations in crowded environments such as living biological cells, we show that the stationarity of the process delicately depends on the initial condition.}, language = {en} } @misc{MassoltBorowski2020, author = {Massolt, Joost Willem and Borowski, Andreas}, title = {Perceived relevance of university physics problems by pre-service physics teachers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {42}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51583}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515838}, pages = {167 -- 189}, year = {2020}, abstract = {Pre-service physics teachers often do not recognise the relevance for their future career in their university content knowledge courses. A lower perceived relevance can, however, have a negative effect on their motivation and on their academic success. Several intervention studies have been undertaken with the goal to increase this perceived relevance. A previous study shows that conceptual physics problems used in university physics courses are perceived by pre-service physics teachers as more relevant for their future career than regular, quantitative problems. It is however not clear, what the students' meaning of the construct 'relevance' is: what makes a problem more relevant to them than another problem? To answer this question, N = 7 pre-service teachers were interviewed using the repertory grid technique, based on the personal construct theory. Nine physics problems were discussed with regards to their perceived relevance and with regards to problem properties that distinguish these problems from each other. We are able to identify six problem properties that have a positive influence on the perceived relevance. Physics problems that are based on these properties should therefore potentially have a higher perceived relevance, which can have a positive effect on the motivation of the pre-service teachers who solve these problems.}, language = {en} } @misc{MatternPudellDumesniletal.2023, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Dumesnil, Karine and Reppert, Alexander von and Bargheer, Matias}, title = {Towards shaping picosecond strain pulses via magnetostrictive transducers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1321}, issn = {1866-8372}, doi = {10.25932/publishup-58886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588868}, pages = {7}, year = {2023}, abstract = {Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.}, language = {en} } @misc{MatternPudellLaskinetal.2021, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Laskin, G. and Reppert, Alexander von and Bargheer, Matias}, title = {Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51571}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515718}, pages = {11}, year = {2021}, abstract = {We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Gr{\"u}neisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime.}, language = {en} } @misc{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard James and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1301}, issn = {1866-8372}, doi = {10.25932/publishup-57744}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577442}, pages = {9}, year = {2022}, abstract = {The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @misc{MenzelHeuerMilonni2019, author = {Menzel, Ralf and Heuer, Axel and Milonni, Peter W.}, title = {Entanglement, complementarity, and vacuum fields in spontaneous parametric down-conversion}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1077}, issn = {1866-8372}, doi = {10.25932/publishup-47354}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473542}, pages = {16}, year = {2019}, abstract = {Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the calculation of a second-order field correlation function in the Heisenberg picture. The latter approach brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in the photon coincidence counting. For comparison, we show that the Hong-Ou-Mandel dip can be explained by the same approach in which the role of the vacuum signal and idler fields, as opposed to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of a theory in which these vacuum fields are treated as classical, stochastic fields.}, language = {en} } @misc{MenzelPuhlmannHeuer2017, author = {Menzel, Ralf and Puhlmann, Dirk and Heuer, Axel}, title = {Complementarity in single photon interference - the role of the mode function and vacuum fields}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395210}, pages = {7}, year = {2017}, abstract = {Background In earlier experiments the role of the vacuum fields could be demonstrated as the source of complementarity with respect to the temporal properties (Heuer et al., Phys. Rev. Lett. 114:053601, 2015). Methods Single photon first order interferences of spatially separated regions from the cone structure of spontaneous parametric down conversion allow for analyzing the role of the mode function in quantum optics regarding the complementarity principle. Results Here the spatial coherence properties of these vacuum fields are demonstrated as the physical reason for complementarity in these single photon quantum optical experiments. These results are directly connected to the mode picture in classical optics. Conclusion The properties of the involved vacuum fields selected via the measurement process are the physical background of the complementarity principle in quantum optics.}, language = {en} } @misc{MetjeLeverMayeretal.2020, author = {Metje, Jan and Lever, Fabiano and Mayer, Dennis and Squibb, Richard James and Robinson, Matthew Scott and Niebuhr, Mario and Feifel, Raimund and D{\"u}sterer, Stefan and G{\"u}hr, Markus}, title = {URSA-PQ}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1016}, issn = {1866-8372}, doi = {10.25932/publishup-48307}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483073}, pages = {15}, year = {2020}, abstract = {We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for 'Ultraschnelle R{\"o}ntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen', Engl. 'ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems') instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments' capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup.}, language = {en} } @misc{MetzlerBauerRasmussenetal.2015, author = {Metzler, Ralf and Bauer, Maximilian and Rasmussen, Emil S. and Lomholt, Michael A.}, title = {Real sequence effects on the search dynamics of transcription factors on DNA}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79411}, year = {2015}, abstract = {Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.}, language = {en} } @misc{MetzlerCherstvyChechkinetal.2015, author = {Metzler, Ralf and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna S.}, title = {Ultraslow scaled Brownian motion}, series = {New journal of physics : the open-access journal for physics}, journal = {New journal of physics : the open-access journal for physics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78618}, year = {2015}, abstract = {We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.}, language = {en} } @misc{MientusHumeWulffetal.2022, author = {Mientus, Lukas and Hume, Anne Christine and Wulff, Peter and Meiners, Antoinette and Borowski, Andreas}, title = {Modelling STEM Teachers' Pedagogical Content Knowledge in the Framework of the Refined Consensus Model: A Systematic Literature Review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-56912}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569127}, pages = {1 -- 25}, year = {2022}, abstract = {Science education researchers have developed a refined understanding of the structure of science teachers' pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies' approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice.}, language = {en} } @misc{MitzscherlingCuiKoopmanetal.2015, author = {Mitzscherling, Steffen and Cui, Qianling and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Dielectric function of two-phase colloid-polymer nanocomposite}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102695}, pages = {29465 -- 29474}, year = {2015}, abstract = {The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell-Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses.}, language = {en} } @misc{MohammadyAuffevesAnders2020, author = {Mohammady, M. Hamed and Auff{\`e}ves, Alexia and Anders, Janet}, title = {Energetic footprints of irreversibility in the quantum regime}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51676}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516766}, pages = {16}, year = {2020}, abstract = {In classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occurs whenever a non-thermal system is brought into contact with a thermal environment. Using quantum trajectories the authors here establish two energetic footprints of quantum irreversible processes, and find that while quantum irreversibility leads to the occurrence of a quantum heat and a reduction of work production, the two are not linked in the same manner as the classical laws of thermodynamics would dictate.}, language = {en} } @misc{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav and Smirnov, Lev A. and Kostin, Vasily and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-52426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524261}, pages = {17}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @misc{NeherKniepertElimelechetal.2016, author = {Neher, Dieter and Kniepert, Juliane and Elimelech, Arik and Koster, L. Jan Anton}, title = {A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91414}, pages = {9}, year = {2016}, abstract = {Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit α to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor.}, language = {en} } @misc{NiebuhrHeuer2017, author = {Niebuhr, Mario and Heuer, Axel}, title = {Phase measurement and far-field reconstruction on externally coupled laser diode arrays}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402140}, pages = {6}, year = {2017}, abstract = {Passive coherent combination of several discrete low power laser diodes is a promising way to overcome the issue of degrading beam quality when scaling single emitters to > 10W output power. Such systems would be an efficient alternative to current high power sources, yet they suffer from fatal coherence loss when operated well above threshold. We present a new way to obtain detailed coherence information for laser diode arrays using a spatial light modulator to help identify the underlying decoherence processes. Reconstruction tests of the emitted far-field distribution are conducted to evaluate the performance of our setup.}, language = {en} } @misc{NishikawaMizunoNiemiecetal.2016, author = {Nishikawa, Ken-Ichi and Mizuno, Yosuke and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin and G{\´o}mez, Jose L. and Duţan, Ioana and Pe'er, Asaf and Frederiksen, Jacob Trier and Nordlund, {\AA}ke and Meli, Athina and Sol, Helene and Hardee, Philip E. and Hartmann, Dieter H.}, title = {Microscopic processes in global relativistic jets containing helical magnetic fields}, series = {Galaxies}, journal = {Galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407604}, pages = {9}, year = {2016}, abstract = {In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron-proton (e(-)-p(+)) and electron-positron (e(+/-)) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of "global" jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e(-)-p(+) jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e(+/-) jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.}, language = {en} }