@phdthesis{Dannehl2013, author = {Dannehl, Claudia}, title = {Fragments of the human antimicrobial LL-37 and their interaction with model membranes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68144}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {A detailed description of the characteristics of antimicrobial peptides (AMPs) is highly demanded, since the resistance against traditional antibiotics is an emerging problem in medicine. They are part of the innate immune system in every organism, and they are very efficient in the protection against bacteria, viruses, fungi and even cancer cells. Their advantage is that their target is the cell membrane, in contrast to antibiotics which disturb the metabolism of the respective cell type. This allows AMPs to be more active and faster. The lack of an efficient therapy for some cancer types and the evolvement of resistance against existing antitumor agents make AMPs promising in cancer therapy besides being an alternative to traditional antibiotics. The aim of this work was the physical-chemical characterization of two fragments of LL-37, a human antimicrobial peptide from the cathelicidin family. The fragments LL-32 and LL-20 exhibited contrary behavior in biological experiments concerning their activity against bacterial cells, human cells and human cancer cells. LL-32 had even a higher activity than LL-37, while LL-20 had almost no effect. The interaction of the two fragments with model membranes was systematically studied in this work to understand their mode of action. Planar lipid films were mainly applied as model systems in combination with IR-spectroscopy and X-ray scattering methods. Circular Dichroism spectroscopy in bulk systems completed the results. In the first approach, the structure of the peptides was determined in aqueous solution and compared to the structure of the peptides at the air/water interface. In bulk, both peptides are in an unstructured conformation. Adsorbed and confined to at the air-water interface, the peptides differ drastically in their surface activity as well as in the secondary structure. While LL-32 transforms into an α-helix lying flat at the water surface, LL-20 stays partly unstructured. This is in good agreement with the high antimicrobial activity of LL-32. In the second approach, experiments with lipid monolayers as biomimetic models for the cell membrane were performed. It could be shown that the peptides fluidize condensed monolayers of negatively charged DPPG which can be related to the thinning of a bacterial cell membrane. An interaction of the peptides with zwitterionic PCs, as models for mammalian cells, was not clearly observed, even though LL-32 is haemolytic. In the third approach, the lipid monolayers were more adapted to the composition of human erythrocyte membranes by incorporating sphingomyelin (SM) into the PC monolayers. Physical-chemical properties of the lipid films were determined and the influence of the peptides on them was studied. It could be shown that the interaction of the more active LL-32 is strongly increased for heterogeneous lipid films containing both gel and fluid phases, while the interaction of LL-20 with the monolayers was unaffected. The results indicate an interaction of LL-32 with the membrane in a detergent-like way. Additionally, the modelling of the peptide interaction with cancer cells was performed by incorporating some negatively charged lipids into the PC/SM monolayers, but the increased charge had no effect on the interaction of LL-32. It was concluded, that the high anti-cancer activity of the peptide originates from the changed fluidity of cell membrane rather than from the increased surface charge. Furthermore, similarities to the physical-chemical properties of melittin, an AMP from the bee venom, were demonstrated.  }, language = {en} } @phdthesis{Theves2013, author = {Theves, Matthias}, title = {Bacterial motility and growth in open and confined environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70313}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the presence of a solid-liquid or liquid-air interface, bacteria can choose between a planktonic and a sessile lifestyle. Depending on environmental conditions, cells swimming in close proximity to the interface can irreversibly attach to the surface and grow into three-dimensional aggregates where the majority of cells is sessile and embedded in an extracellular polymer matrix (biofilm). We used microfluidic tools and time lapse microscopy to perform experiments with the polarly flagellated soil bacterium Pseudomonas putida (P. putida), a bacterial species that is able to form biofilms. We analyzed individual trajectories of swimming cells, both in the bulk fluid and in close proximity to a glass-liquid interface. Additionally, surface related growth during the early phase of biofilm formation was investigated. In the bulk fluid, P.putida shows a typical bacterial swimming pattern of alternating periods of persistent displacement along a line (runs) and fast reorientation events (turns) and cells swim with an average speed around 24 micrometer per second. We found that the distribution of turning angles is bimodal with a dominating peak around 180 degrees. In approximately six out of ten turning events, the cell reverses its swimming direction. In addition, our analysis revealed that upon a reversal, the cell systematically changes its swimming speed by a factor of two on average. Based on the experimentally observed values of mean runtime and rotational diffusion, we presented a model to describe the spreading of a population of cells by a run-reverse random walker with alternating speeds. We successfully recover the mean square displacement and, by an extended version of the model, also the negative dip in the directional autocorrelation function as observed in the experiments. The analytical solution of the model demonstrates that alternating speeds enhance a cells ability to explore its environment as compared to a bacterium moving at a constant intermediate speed. As compared to the bulk fluid, for cells swimming near a solid boundary we observed an increase in swimming speed at distances below d= 5 micrometer and an increase in average angular velocity at distances below d= 4 micrometer. While the average speed was maximal with an increase around 15\% at a distance of d= 3 micrometer, the angular velocity was highest in closest proximity to the boundary at d=1 micrometer with an increase around 90\% as compared to the bulk fluid. To investigate the swimming behavior in a confinement between two solid boundaries, we developed an experimental setup to acquire three-dimensional trajectories using a piezo driven objective mount coupled to a high speed camera. Results on speed and angular velocity were consistent with motility statistics in the presence of a single boundary. Additionally, an analysis of the probability density revealed that a majority of cells accumulated near the upper and lower boundaries of the microchannel. The increase in angular velocity is consistent with previous studies, where bacteria near a solid boundary were shown to swim on circular trajectories, an effect which can be attributed to a wall induced torque. The increase in speed at a distance of several times the size of the cell body, however, cannot be explained by existing theories which either consider the drag increase on cell body and flagellum near a boundary (resistive force theory) or model the swimming microorganism by a multipole expansion to account for the flow field interaction between cell and boundary. An accumulation of swimming bacteria near solid boundaries has been observed in similar experiments. Our results confirm that collisions with the surface play an important role and hydrodynamic interactions alone cannot explain the steady-state accumulation of cells near the channel walls. Furthermore, we monitored the number growth of cells in the microchannel under medium rich conditions. We observed that, after a lag time, initially isolated cells at the surface started to grow by division into colonies of increasing size, while coexisting with a comparable smaller number of swimming cells. After 5:50 hours, we observed a sudden jump in the number of swimming cells, which was accompanied by a breakup of bigger clusters on the surface. After approximately 30 minutes where planktonic cells dominated in the microchannel, individual swimming cells reattached to the surface. We interpret this process as an emigration and recolonization event. A number of complementary experiments were performed to investigate the influence of collective effects or a depletion of the growth medium on the transition. Similar to earlier observations on another bacterium from the same family we found that the release of cells to the swimming phase is most likely the result of an individual adaption process, where syntheses of proteins for flagellar motility are upregulated after a number of division cycles at the surface.}, language = {en} } @phdthesis{Guiducci2013, author = {Guiducci, Lorenzo}, title = {Passive biomimetic actuators : the role of material architecture}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70446}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Passive plant actuators have fascinated many researchers in the field of botany and structural biology since at least one century. Up to date, the most investigated tissue types in plant and artificial passive actuators are fibre-reinforced composites (and multilayered assemblies thereof) where stiff, almost inextensible cellulose microfibrils direct the otherwise isotropic swelling of a matrix. In addition, Nature provides examples of actuating systems based on lignified, low-swelling, cellular solids enclosing a high-swelling cellulosic phase. This is the case of the Delosperma nakurense seed capsule, in which a specialized tissue promotes the reversible opening of the capsule upon wetting. This tissue has a diamond-shaped honeycomb microstructure characterized by high geometrical anisotropy: when the cellulosic phase swells inside this constraining structure, the tissue deforms up to four times in one principal direction while maintaining its original dimension in the other. Inspired by the example of the Delosoperma nakurense, in this thesis we analyze the role of architecture of 2D cellular solids as models for natural hygromorphs. To start off, we consider a simple fluid pressure acting in the cells and try to assess the influence of several architectural parameters onto their mechanical actuation. Since internal pressurization is a configurational type of load (that is the load direction is not fixed but it "follows" the structure as it deforms) it will result in the cellular structure acquiring a "spontaneous" shape. This shape is independent of the load but just depends on the architectural characteristics of the cells making up the structure itself. Whereas regular convex tiled cellular solids (such as hexagonal, triangular or square lattices) deform isotropically upon pressurization, we show through finite element simulations that by introducing anisotropic and non-convex, reentrant tiling large expansions can be achieved in each individual cell. The influence of geometrical anisotropy onto the expansion behaviour of a diamond shaped honeycomb is assessed by FEM calculations and a Born lattice approximation. We found that anisotropic expansions (eigenstrains) comparable to those observed in the keels tissue of the Delosoperma nakurense are possible. In particular these depend on the relative contributions of bending and stretching of the beams building up the honeycomb. Moreover, by varying the walls' Young modulus E and internal pressure p we found that both the eigenstrains and 2D elastic moduli scale with the ratio p/E. Therefore the potential of these pressurized structures as soft actuators is outlined. This approach was extended by considering several 2D cellular solids based on two types of non-convex cells. Each honeycomb is build as a lattice made of only one non-convex cell. Compared to usual honeycombs, these lattices have kinked walls between neighbouring cells which offers a hidden length scale allowing large directed deformations. By comparing the area expansion in all lattices, we were able to show that less convex cells are prone to achieve larger area expansions, but the direction in which the material expands is variable and depends on the local cell's connectivity. This has repercussions both at the macroscopic (lattice level) and microscopic (cells level) scales. At the macroscopic scale, these non-convex lattices can experience large anisotropic (similarly to the diamond shaped honeycomb) or perfectly isotropic principal expansions, large shearing deformations or a mixed behaviour. Moreover, lattices that at the macroscopic scale expand similarly can show quite different microscopic deformation patterns that include zig-zag motions and radical changes of the initial cell shape. Depending on the lattice architecture, the microscopic deformations of the individual cells can be equal or not, so that they can build up or mutually compensate and hence give rise to the aforementioned variety of macroscopic behaviours. Interestingly, simple geometrical arguments involving the undeformed cell shape and its local connectivity enable to predict the results of the FE simulations. Motivated by the results of the simulations, we also created experimental 3D printed models of such actuating structures. When swollen, the models undergo substantial deformation with deformation patterns qualitatively following those predicted by the simulations. This work highlights how the internal architecture of a swellable cellular solid can lead to complex shape changes which may be useful in the fields of soft robotics or morphing structures.}, language = {en} } @misc{BarbosaPfannesAnielskiGerhardtetal.2013, author = {Barbosa Pfannes, Eva Katharina and Anielski, Alexander and Gerhardt, Matthias and Beta, Carsten}, title = {Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94984}, pages = {1456 -- 1463}, year = {2013}, abstract = {Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system.}, language = {en} } @phdthesis{Jaiser2013, author = {Jaiser, Ralf}, title = {Dreidimensionale Diagnostik der großskaligen Zirkulation der Tropo- und Stratosph{\"a}re}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69064}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In dieser Arbeit werden Konzepte f{\"u}r die Diagnostik der großskaligen Zirkulation in der Troposph{\"a}re und Stratosph{\"a}re entwickelt. Der Fokus liegt dabei auf dem Energiehaushalt, auf der Wellenausbreitung und auf der Interaktion der atmosph{\"a}rischen Wellen mit dem Grundstrom. Die Konzepte werden hergeleitet, wobei eine neue Form des lokalen Eliassen-Palm-Flusses unter Einbeziehung der Feuchte eingef{\"u}hrt wird. Angewendet wird die Diagnostik dann auf den Reanalysedatensatz ERA-Interim und einen durch beobachtete Meerestemperatur- und Eisdaten angetriebenen Lauf des ECHAM6 Atmosph{\"a}renmodells. Die diagnostischen Werkzeuge zur Analyse der großskaligen Zirkulation sind einerseits n{\"u}tzlich, um das Verst{\"a}ndnis der Dynamik des Klimasystems weiter zu f{\"o}rdern. Andererseits kann das gewonnene Verst{\"a}ndnis des Zusammenhangs von Energiequellen und -senken sowie deren Verkn{\"u}pfung mit synoptischen und planetaren Wellensystemen und dem resultierenden Antrieb des Grundstroms auch verwendet werden, um Klimamodelle auf die korrekte Wiedergabe dieser Beobachtungen zu pr{\"u}fen. Hier zeigt sich, dass die Abweichungen im untersuchten ECHAM6-Modelllauf bez{\"u}glich des Energiehaushalts klein sind, jedoch teils starke Abweichungen bez{\"u}glich der Ausbreitung von atmosph{\"a}rischen Wellen existieren. Planetare Wellen zeigen allgemein zu große Intensit{\"a}ten in den Eliassen-Palm-Fl{\"u}ssen, w{\"a}hrend innerhalb der Strahlstr{\"o}me der oberen Troposph{\"a}re der Antrieb des Grundstroms durch synoptische Wellen verf{\"a}lscht ist, da deren vertikale Ausbreitung gegen{\"u}ber den Beobachtungen verschoben ist. Untersucht wird auch der Einfluss von arktischen Meereis{\"a}nderungen ausgehend vom Bedeckungsminimum im August/September bis in den Winter. Es werden starke positive Temperaturanomalien festgestellt, welche an der Oberfl{\"a}che am gr{\"o}ßten sind. Diese f{\"u}hren vor allem im Herbst zur Intensivierung von synoptischen Systemen in den arktischen Breiten, da die Stabilit{\"a}t der troposph{\"a}rischen Schichtung verringert ist. Im darauffolgenden Winter stellen sich barotrope bis in die Stratosph{\"a}re reichende {\"A}nderungen der großskaligen Zirkulation ein, welche auf Meereis{\"a}nderungen zur{\"u}ckzuf{\"u}hren sind. Der meridionale Druckgradient sinkt und f{\"u}hrt so zu einem Muster {\"a}hnlich einer negativen Phase der arktischen Oszillation in der Troposph{\"a}re und einem geschw{\"a}chten Polarwirbel in der Stratosph{\"a}re. Diese Zusammenh{\"a}nge werden ebenfalls in einem ECHAM6-Modelllauf untersucht, wobei vor allem der Erw{\"a}rmungstrend in der Arktis zu gering ist. Die großskaligen Ver{\"a}nderungen im Winter k{\"o}nnen zum Teil auch im Modelllauf festgestellt werden, jedoch zeigen sich insbesondere in der Stratosph{\"a}re Abweichungen f{\"u}r die Periode mit der geringsten Eisausdehnung. Die vertikale Ausbreitung planetarer Wellen von der Troposph{\"a}re in die Stratosph{\"a}re ist in ECHAM6 mit sehr großen Abweichungen wiedergegeben. Somit stellt die Wellenausbreitung insgesamt den gr{\"o}ßten in dieser Arbeit festgestellten Mangel in ECHAM6 dar.}, language = {de} } @phdthesis{Patra2013, author = {Patra, Pintu}, title = {Population dynamics of bacterial persistence}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69253}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The life of microorganisms is characterized by two main tasks, rapid growth under conditions permitting growth and survival under stressful conditions. The environments, in which microorganisms dwell, vary in space and time. The microorganisms innovate diverse strategies to readily adapt to the regularly fluctuating environments. Phenotypic heterogeneity is one such strategy, where an isogenic population splits into subpopulations that respond differently under identical environments. Bacterial persistence is a prime example of such phenotypic heterogeneity, whereby a population survives under an antibiotic attack, by keeping a fraction of population in a drug tolerant state, the persister state. Specifically, persister cells grow more slowly than normal cells under growth conditions, but survive longer under stress conditions such as the antibiotic administrations. Bacterial persistence is identified experimentally by examining the population survival upon an antibiotic treatment and the population resuscitation in a growth medium. The underlying population dynamics is explained with a two state model for reversible phenotype switching in a cell within the population. We study this existing model with a new theoretical approach and present analytical expressions for the time scale observed in population growth and resuscitation, that can be easily used to extract underlying model parameters of bacterial persistence. In addition, we recapitulate previously known results on the evolution of such structured population under periodically fluctuating environment using our simple approximation method. Using our analysis, we determine model parameters for Staphylococcus aureus population under several antibiotics and interpret the outcome of cross-drug treatment. Next, we consider the expansion of a population exhibiting phenotype switching in a spatially structured environment consisting of two growth permitting patches separated by an antibiotic patch. The dynamic interplay of growth, death and migration of cells in different patches leads to distinct regimes in population propagation speed as a function of migration rate. We map out the region in parameter space of phenotype switching and migration rate to observe the condition under which persistence is beneficial. Furthermore, we present an extended model that allows mutation from the two phenotypic states to a resistant state. We find that the presence of persister cells may enhance the probability of resistant mutation in a population. Using this model, we explain the experimental results showing the emergence of antibiotic resistance in a Staphylococcus aureus population upon tobramycin treatment. In summary, we identify several roles of bacterial persistence, such as help in spatial expansion, development of multidrug tolerance and emergence of antibiotic resistance. Our study provides a theoretical perspective on the dynamics of bacterial persistence in different environmental conditions. These results can be utilized to design further experiments, and to develop novel strategies to eradicate persistent infections.}, language = {en} } @phdthesis{Schick2013, author = {Schick, Daniel}, title = {Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68827}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects.}, language = {en} } @phdthesis{Dubinovska2013, author = {Dubinovska, Daria}, title = {Optical surveys of AGN and their host galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64739}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This thesis rests on two large Active Galactic Nuclei (AGNs) surveys. The first survey deals with galaxies that host low-level AGNs (LLAGN) and aims at identifying such galaxies by quantifying their variability. While numerous studies have shown that AGNs can be variable at all wavelengths, the nature of the variability is still not well understood. Studying the properties of LLAGNs may help to understand better galaxy evolution, and how AGNs transit between active and inactive states. In this thesis, we develop a method to extract variability properties of AGNs. Using multi-epoch deep photometric observations, we subtract the contribution of the host galaxy at each epoch to extract variability and estimate AGN accretion rates. This pipeline will be a powerful tool in connection with future deep surveys such as PANSTARS. The second study in this thesis describes a survey of X-ray selected AGN hosts at redshifts z>1.5 and compares them to quiescent galaxies. This survey aims at studying environments, sizes and morphologies of star-forming high-redshift AGN hosts in the COSMOS Survey at the epoch of peak AGN activity. Between redshifts 1.51.5 to date. We analyzed the evolution of structural parameters of AGN and non-AGN host galaxies with redshift, and compared their disturbance rates to identify the more probable AGN triggering mechanism in the 43.5 10^9 M_sun). The probability that the observed HVS population is significantly contaminated by tidal debris stars appears small in the light of our results.}, language = {en} } @phdthesis{Raetzel2013, author = {R{\"a}tzel, Dennis}, title = {Tensorial spacetime geometries and background-independent quantum field theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65731}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.}, language = {en} } @phdthesis{Boedecker2013, author = {Boedecker, Geesche}, title = {Resonance Fluorescence in a Photonic Crystal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69591}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The problem under consideration in the thesis is a two level atom in a photonic crystal and a pumping laser. The photonic crystal provides an environment for the atom, that modifies the decay of the exited state, especially if the atom frequency is close to the band gap. The population inversion is investigated als well as the emission spectrum. The dynamics is analysed in the context of open quantum systems. Due to the multiple reflections in the photonic crystal, the system has a finite memory that inhibits the Markovian approximation. In the Heisenberg picture the equations of motion for the system variables form a infinite hierarchy of integro-differential equations. To get a closed system, approximations like a weak coupling approximation are needed. The thesis starts with a simple photonic crystal that is amenable to analytic calculations: a one-dimensional photonic crystal, that consists of alternating layers. The Bloch modes inside and the vacuum modes outside a finite crystal are linked with a transformation matrix that is interpreted as a transfer matrix. Formulas for the band structure, the reflection from a semi-infinite crystal, and the local density of states in absorbing crystals are found; defect modes and negative refraction are discussed. The quantum optics section of the work starts with the discussion of three problems, that are related to the full resonance fluorescence problem: a pure dephasing model, the driven atom and resonance fluorescence in free space. In the lowest order of the system-environment coupling, the one-time expectation values for the full problem are calculated analytically and the stationary states are discussed for certain cases. For the calculation of the two time correlation functions and spectra, the additional problem of correlations between the two times appears. In the Markovian case, the quantum regression theorem is valid. In the general case, the fluctuation dissipation theorem can be used instead. The two-time correlation functions are calculated by the two different methods. Within the chosen approximations, both methods deliver the same result. Several plots show the dependence of the spectrum on the parameters. Some examples for squeezing spectra are shown with different approximations. A projection operator method is used to establish two kinds of Markovian expansion with and without time convolution. The lowest order is identical with the lowest order of system environment coupling, but higher orders give different results.}, language = {en} } @phdthesis{Garz2013, author = {Garz, Andreas}, title = {Nichtlineare Mikroskopie und Bilddatenverarbeitung zur biochemischen Analyse synchronisierter Chlamydomonas-Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66904}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Unter geeigneten Wachstumsbedingungen weisen Algenkulturen oft eine gr{\"o}ßere Produktivit{\"a}t der Zellen auf, als sie bei h{\"o}heren Pflanzen zu beobachten ist. Chlamydomonas reinhardtii-Zellen sind vergleichsweise klein. So betr{\"a}gt das Zellvolumen w{\"a}hrend des vegetativen Zellzyklus etwa 50-3500 µm³. Im Vergleich zu h{\"o}heren Pflanzen ist in einer Algensuspension die Konzentration der Biomasse allerdings gering. So enth{\"a}lt beispielsweise 1 ml einer {\"u}blichen Konzentration zwischen 10E6 und 10E7 Algenzellen. Quantifizierungen von Metaboliten oder Makromolek{\"u}len, die zur Modellierung von zellul{\"a}ren Prozessen genutzt werden, werden meist im Zellensemble vorgenommen. Tats{\"a}chlich unterliegt jedoch jede Algenzelle einer individuellen Entwicklung, die die Identifizierung charakteristischer allgemeing{\"u}ltiger Systemparameter erschwert. Ziel dieser Arbeit war es, biochemisch relevante Messgr{\"o}ßen in-vivo und in-vitro mit Hilfe optischer Verfahren zu identifizieren und zu quantifizieren. Im ersten Teil der Arbeit wurde ein Puls-Amplituden-Modulation(PAM)-Fluorimetriemessplatz zur Messung der durch {\"a}ußere Einfl{\"u}sse bedingten ver{\"a}nderlichen Chlorophyllfluoreszenz an einzelnen Zellen vorgestellt. Die Verwendung eines kommerziellen Mikroskops, die Implementierung empfindlicher Nachweiselektronik und einer geeignete Immobilisierungsmethode erm{\"o}glichten es, ein Signal-zu-Rauschverh{\"a}ltnis zu erreichen, mit dem Fluoreszenzsignale einzelner lebender Chlamydomonas-Zellen gemessen werden konnten. Insbesondere wurden das Zellvolumen und der als Maß f{\"u}r die Effizienz des Photosyntheseapparats bzw. die Zellfitness geltende Chlorophyllfluoreszenzparameter Fv/Fm ermittelt und ein hohes Maß an Heterogenit{\"a}t dieser zellul{\"a}ren Parameter in verschiedenen Entwicklungsstadien der synchronisierten Chlamydomonas-Zellen festgestellt. Im zweiten Teil der Arbeit wurden die bildgebende Laser-Scanning-Mikroskopie und anschließende Bilddatenanalyse zur quantitativen Erfassung der wachstumsabh{\"a}ngigen zellul{\"a}ren Parameter angewandt. Ein kommerzielles konfokales Mikroskop wurde um die M{\"o}glichkeit der nichtlinearen Mikroskopie erweitert. Diese hat den Vorteil einer lokalisierten Anregung, damit verbunden einer h{\"o}heren Ortsaufl{\"o}sung und insgesamt geringeren Probenbelastung. Weiterhin besteht neben der Signalgewinnung durch Fluoreszenzanregung die M{\"o}glichkeit der Erzeugung der Zweiten Harmonischen (SHG) an biophotonischen Strukturen, wie der zellul{\"a}ren St{\"a}rke. Anhand der Verteilungsfunktionen war es m{\"o}glich mit Hilfe von modelltheoretischen Ans{\"a}tzen zellul{\"a}re Parameter zu ermitteln, die messtechnisch nicht unmittelbar zug{\"a}nglich sind. Die morphologischen Informationen der Bilddaten erm{\"o}glichten die Bestimmung der Zellvolumina und die Volumina subzellularer Strukturen, wie Nuclei, extranucle{\"a}re DNA oder St{\"a}rkegranula. Weiterhin konnte die Anzahl subzellul{\"a}rer Strukturen innerhalb einer Zelle bzw. eines Zellverbunds ermittelt werden. Die Analyse der in den Bilddaten enthaltenen Signalintensit{\"a}ten war Grundlage einer relativen Konzentrationsbestimmung von zellul{\"a}ren Komponenten, wie DNA bzw. St{\"a}rke. Mit dem hier vorgestellten Verfahren der nichtlinearen Mikroskopie und nachfolgender Bilddatenanalyse konnte erstmalig die Verteilung des zellul{\"a}ren St{\"a}rkegehalts in einer Chlamydomonas-Population w{\"a}hrend des Wachstums bzw. nach induziertem St{\"a}rkeabbau verfolgt werden. Im weiteren Verlauf wurde diese Methode auch auf Gefrierschnitte h{\"o}herer Pflanzen, wie Arabidopsis thaliana, angewendet. Im Ergebnis wurde gezeigt, dass viele zellul{\"a}re Parameter, wie das Volumen, der zellul{\"a}re DNA- und St{\"a}rkegehalt bzw. die Anzahl der St{\"a}rkegranula durch eine Lognormalverteilung, mit wachstumsabh{\"a}ngiger Parametrisierung, beschrieben werden. Zellul{\"a}re Parameter, wie Stoffkonzentration und zellul{\"a}res Volumen, zeigen keine signifikanten Korrelationen zueinander, woraus geschlussfolgert werden muss, dass es ein hohes Maß an Heterogenit{\"a}t der zellul{\"a}ren Parameter innerhalb der synchronisierten Chlamydomonas-Populationen gibt. Diese Aussage gilt sowohl f{\"u}r die als homogenste Form geltenden Synchronkulturen von Chlamydomonas reinhardtii als auch f{\"u}r die gemessenen zellul{\"a}ren Parameter im intakten Zellverbund h{\"o}herer Pflanzen. Dieses Ergebnis ist insbesondere f{\"u}r modelltheoretische Betrachtungen von Relevanz, die sich auf empirische Daten bzw. zellul{\"a}re Parameter st{\"u}tzen welche im Zellensemble gemessen wurden und somit nicht notwendigerweise den zellul{\"a}ren Status einer einzelnen Zelle repr{\"a}sentieren.}, language = {de} } @phdthesis{Inal2013, author = {Inal, Sahika}, title = {Responsive polymers for optical sensing applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70806}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {LCST-type synthetic thermoresponsive polymers can reversibly respond to certain stimuli in aqueous media with a massive change of their physical state. When fluorophores, that are sensitive to such changes, are incorporated into the polymeric structure, the response can be translated into a fluorescence signal. Based on this idea, this thesis presents sensing schemes which transduce the stimuli-induced variations in the solubility of polymer chains with covalently-bound fluorophores into a well-detectable fluorescence output. Benefiting from the principles of different photophysical phenomena, i.e. of fluorescence resonance energy transfer and solvatochromism, such fluorescent copolymers enabled monitoring of stimuli such as the solution temperature and ionic strength, but also of association/disassociation mechanisms with other macromolecules or of biochemical binding events through remarkable changes in their fluorescence properties. For instance, an aqueous ratiometric dual sensor for temperature and salts was developed, relying on the delicate supramolecular assembly of a thermoresponsive copolymer with a thiophene-based conjugated polyelectrolyte. Alternatively, by taking advantage of the sensitivity of solvatochromic fluorophores, an increase in solution temperature or the presence of analytes was signaled as an enhancement of the fluorescence intensity. A simultaneous use of the sensitivity of chains towards the temperature and a specific antibody allowed monitoring of more complex phenomena such as competitive binding of analytes. The use of different thermoresponsive polymers, namely poly(N-isopropylacrylamide) and poly(meth)acrylates bearing oligo(ethylene glycol) side chains, revealed that the responsive polymers differed widely in their ability to perform a particular sensing function. In order to address questions regarding the impact of the chemical structure of the host polymer on the sensing performance, the macromolecular assembly behavior below and above the phase transition temperature was evaluated by a combination of fluorescence and light scattering methods. It was found that although the temperature-triggered changes in the macroscopic absorption characteristics were similar for these polymers, properties such as the degree of hydration or the extent of interchain aggregations differed substantially. Therefore, in addition to the demonstration of strategies for fluorescence-based sensing with thermoresponsive polymers, this work highlights the role of the chemical structure of the two popular thermoresponsive polymers on the fluorescence response. The results are fundamentally important for the rational choice of polymeric materials for a specific sensing strategy.}, language = {en} } @phdthesis{Pingel2013, author = {Pingel, Patrick}, title = {Morphology, charge transport properties, and molecular doping of thiophene-based organic semiconducting thin films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69805}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Organic semiconductors combine the benefits of organic materials, i.e., low-cost production, mechanical flexibility, lightweight, and robustness, with the fundamental semiconductor properties light absorption, emission, and electrical conductivity. This class of material has several advantages over conventional inorganic semiconductors that have led, for instance, to the commercialization of organic light-emitting diodes which can nowadays be found in the displays of TVs and smartphones. Moreover, organic semiconductors will possibly lead to new electronic applications which rely on the unique mechanical and electrical properties of these materials. In order to push the development and the success of organic semiconductors forward, it is essential to understand the fundamental processes in these materials. This thesis concentrates on understanding how the charge transport in thiophene-based semiconductor layers depends on the layer morphology and how the charge transport properties can be intentionally modified by doping these layers with a strong electron acceptor. By means of optical spectroscopy, the layer morphologies of poly(3-hexylthiophene), P3HT, P3HT-fullerene bulk heterojunction blends, and oligomeric polyquaterthiophene, oligo-PQT-12, are studied as a function of temperature, molecular weight, and processing conditions. The analyses rely on the decomposition of the absorption contributions from the ordered and the disordered parts of the layers. The ordered-phase spectra are analyzed using Spano's model. It is figured out that the fraction of aggregated chains and the interconnectivity of these domains is fundamental to a high charge carrier mobility. In P3HT layers, such structures can be grown with high-molecular weight, long P3HT chains. Low and medium molecular weight P3HT layers do also contain a significant amount of chain aggregates with high intragrain mobility; however, intergranular connectivity and, therefore, efficient macroscopic charge transport are absent. In P3HT-fullerene blend layers, a highly crystalline morphology that favors the hole transport and the solar cell efficiency can be induced by annealing procedures and the choice of a high-boiling point processing solvent. Based on scanning near-field and polarization optical microscopy, the morphology of oligo-PQT-12 layers is found to be highly crystalline which explains the rather high field-effect mobility in this material as compared to low molecular weight polythiophene fractions. On the other hand, crystalline dislocations and grain boundaries are identified which clearly limit the charge carrier mobility in oligo-PQT-12 layers. The charge transport properties of organic semiconductors can be widely tuned by molecular doping. Indeed, molecular doping is a key to highly efficient organic light-emitting diodes and solar cells. Despite this vital role, it is still not understood how mobile charge carriers are induced into the bulk semiconductor upon the doping process. This thesis contains a detailed study of the doping mechanism and the electrical properties of P3HT layers which have been p-doped by the strong molecular acceptor tetrafluorotetracyanoquinodimethane, F4TCNQ. The density of doping-induced mobile holes, their mobility, and the electrical conductivity are characterized in a broad range of acceptor concentrations. A long-standing debate on the nature of the charge transfer between P3HT and F4TCNQ is resolved by showing that almost every F4TCNQ acceptor undergoes a full-electron charge transfer with a P3HT site. However, only 5\% of these charge transfer pairs can dissociate and induce a mobile hole into P3HT which contributes electrical conduction. Moreover, it is shown that the left-behind F4TCNQ ions broaden the density-of-states distribution for the doping-induced mobile holes, which is due to the longrange Coulomb attraction in the low-permittivity organic semiconductors.}, language = {en} }