@misc{BetaGovYochelis2020, author = {Beta, Carsten and Gov, Nir S. and Yochelis, Arik}, title = {Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {967}, issn = {1866-8372}, doi = {10.25932/publishup-47358}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473588}, pages = {20}, year = {2020}, abstract = {During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator-inhibitor type and highlight the qualitative role of mass conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass conservation, and distinct behaviors of actin waves.}, language = {en} } @misc{TodtPenaZuehlkeetal.2011, author = {Todt, Helge Tobias and Pe{\~n}a, Miriam and Z{\"u}hlke, Julia and Oskinova, Lida and Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {Weak emission line central stars of planetary nebulae}, series = {Planetary Nebulae: an Eye to the Future}, journal = {Planetary Nebulae: an Eye to the Future}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413775}, pages = {2}, year = {2011}, abstract = {To understand the evolution and morphology of planetary nebulae, a detailed knowledge of their central stars is required. Central stars that exhibit emission lines in their spectra, indicating stellar mass-loss allow to study the evolution of planetary nebulae in action. Emission line central stars constitute about 10 \% of all central stars. Half of them are practically hydrogen-free Wolf-Rayet type central stars of the carbon sequence, [WC], that show strong emission lines of carbon and oxygen in their spectra. In this contribution we address the weak emission-lines central stars (wels). These stars are poorly analyzed and their hydrogen content is mostly unknown. We obtained optical spectra, that include the important Balmer lines of hydrogen, for four weak emission line central stars. We present the results of our analysis, provide spectral classification and discuss possible explanations for their formation and evolution.}, language = {en} } @misc{AbdallaAdamAharonianetal.2020, author = {Abdalla, Hassan E. and Adam, Remi and Aharonian, Felix A. and Benkhali, Faical Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, Masanori and Arcaro, C and Armand, Catherine and Armstrong, T. and Egberts, Kathrin}, title = {Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-52600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526000}, pages = {15}, year = {2020}, abstract = {We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.}, language = {en} } @misc{SchickEckertPontiusetal.2016, author = {Schick, Daniel and Eckert, Sebastian and Pontius, Niko and Mitzner, Rolf and F{\"o}hlisch, Alexander and Holldack, Karsten and Sorgenfrei, Nomi}, title = {Versatile soft X-ray-optical cross-correlator for ultrafast applications}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1331}, issn = {1866-8372}, doi = {10.25932/publishup-43696}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436962}, pages = {054304-1 -- 054304-8}, year = {2016}, abstract = {We present an X-ray-optical cross-correlator for the soft (> 150 eV) up to the hard X-ray regime based on a molybdenum-silicon superlattice. The cross-correlation is done by probing intensity and position changes of superlattice Bragg peaks caused by photoexcitation of coherent phonons. This approach is applicable for a wide range of X-ray photon energies as well as for a broad range of excitation wavelengths and requires no external fields or changes of temperature. Moreover, the cross-correlator can be employed on a 10 ps or 100 fs time scale featuring up to 50\% total X-ray reflectivity and transient signal changes of more than 20\%. (C) 2016 Author(s).}, language = {en} } @misc{PulkkinenMetzler2015, author = {Pulkkinen, Otto and Metzler, Ralf}, title = {Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86632}, year = {2015}, abstract = {Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.}, language = {en} } @misc{MetjeLeverMayeretal.2020, author = {Metje, Jan and Lever, Fabiano and Mayer, Dennis and Squibb, Richard James and Robinson, Matthew Scott and Niebuhr, Mario and Feifel, Raimund and D{\"u}sterer, Stefan and G{\"u}hr, Markus}, title = {URSA-PQ}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1016}, issn = {1866-8372}, doi = {10.25932/publishup-48307}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483073}, pages = {15}, year = {2020}, abstract = {We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for 'Ultraschnelle R{\"o}ntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen', Engl. 'ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems') instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments' capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup.}, language = {en} } @misc{EckertNorellMiedemaetal.2017, author = {Eckert, Sebastian and Norell, Jesper and Miedema, Piter S. and Beye, Martin and Fondell, Mattis and Quevedo, Wilson and Kennedy, Brian and Hantschmann, Markus and Pietzsch, Annette and van Kuiken, Benjamin E. and Ross, Matthew and Minitti, Michael P. and Moeller, Stefan P. and Schlotter, William F. and Khalil, Munira and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Untersuchung unabh{\"a}ngiger N-H- und N-C-Bindungsverformungen auf ultrakurzen Zeitskalen mit resonanter inelastischer R{\"o}ntgenstreuung}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1121}, issn = {1866-8372}, doi = {10.25932/publishup-43668}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436688}, pages = {7}, year = {2017}, abstract = {Die Femtosekundendynamik nach resonanten Photoanregungen mit optischen und R{\"o}ntgenpulsen erm{\"o}glicht eine selektive Verformung von chemischen N-H- und N-C-Bindungen in 2-Thiopyridon in w{\"a}ssriger L{\"o}sung. Die Untersuchung der orbitalspezifischen elektronischen Struktur und ihrer Dynamik auf ultrakurzen Zeitskalen mit resonanter inelastischer R{\"o}ntgenstreuung an der N1s-Resonanz am Synchrotron und dem Freie-Elektronen-Laser LCLS in Kombination mit quantenchemischen Multikonfigurationsberechnungen erbringen den direkten Nachweis dieser kontrollierten photoinduzierten Molek{\"u}lverformungen und ihrer ultrakurzen Zeitskala.}, language = {de} } @misc{VilkAghionAvgaretal.2022, author = {Vilk, Ohad and Aghion, Erez and Avgar, Tal and Beta, Carsten and Nagel, Oliver and Sabri, Adal and Sarfati, Raphael and Schwartz, Daniel K. and Weiß, Matthias and Krapf, Diego and Nathan, Ran and Metzler, Ralf and Assaf, Michael}, title = {Unravelling the origins of anomalous diffusion}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1303}, issn = {1866-8372}, doi = {10.25932/publishup-57764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577643}, pages = {16}, year = {2022}, abstract = {Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations ("Joseph effect"), fat-tailed probability density of increments ("Noah effect"), and nonstationarity ("Moses effect"). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology.}, language = {en} } @misc{HempelKoseskaNikoloskietal.2017, author = {Hempel, Sabrina and Koseska, Aneta and Nikoloski, Zoran and Kurths, J{\"u}rgen}, title = {Unraveling gene regulatory networks from time-resolved gene expression data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400924}, pages = {26}, year = {2017}, abstract = {Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study. Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common similarity measures which do not consider the temporal character of the employed data. Moreover, we establish that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and rank based measures (for high noise level) are the most suitable choices.}, language = {en} } @misc{SposiniGrebenkovMetzleretal.2020, author = {Sposini, Vittoria and Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb and Seno, Flavio}, title = {Universal spectral features of different classes of random-diffusivity processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {999}, issn = {1866-8372}, doi = {10.25932/publishup-47696}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476960}, pages = {27}, year = {2020}, abstract = {Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations.}, language = {en} } @misc{WangSenoSokolovetal.2020, author = {Wang, Wei and Seno, Flavio and Sokolov, Igor M. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Unexpected crossovers in correlated random-diffusivity processes}, number = {1006}, issn = {1866-8372}, doi = {10.25932/publishup-48004}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480049}, pages = {18}, year = {2020}, abstract = {The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion.}, language = {en} } @misc{BodrovaChechkinCherstvyetal.2016, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Safdari, Hadiseh and Sokolov, Igor M. and Metzler, Ralf}, title = {Underdamped scaled Brownian motion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97158}, pages = {16}, year = {2016}, abstract = {It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.}, language = {en} } @misc{MetzlerCherstvyChechkinetal.2015, author = {Metzler, Ralf and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna S.}, title = {Ultraslow scaled Brownian motion}, series = {New journal of physics : the open-access journal for physics}, journal = {New journal of physics : the open-access journal for physics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78618}, year = {2015}, abstract = {We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.}, language = {en} } @misc{Guehr2016, author = {G{\"u}hr, Markus}, title = {Ultrafast Soft X-ray Probing of Gas Phase Molecular Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97215}, year = {2016}, abstract = {The molecular ability to selectively and efficiently convert sunlight into other forms of energy like heat, bond change, or charge separation is truly remarkable. The decisive steps in these transformations often happen on a femtosecond timescale and require transitions among different electronic states that violate the Born-Oppenheimer approximation (BOA). Non-BOA transitions pose challenges to both theory and experiment. From a theoretical point of view, excited state dynamics and nonadiabatic transitions both are difficult problems (see Figure 1(a)). However, the theory on non-BOA dynamics has advanced significantly over the last two decades. Full dynamical simulations for molecules of the size of nucleobases have been possible for a couple of years and allow predictions of experimental observables like photoelectron energy or ion yield. The availability of these calculations for isolated molecules has spurred new experimental efforts to develop methods that are sufficiently different from all optical techniques. For determination of transient molecular structure, femtosecond X-ray diffraction and electron diffraction have been implemented on optically excited molecules.}, language = {en} } @misc{EckertNorellMiedemaetal.2017, author = {Eckert, Sebastian and Norell, Jesper and Miedema, Piter S. and Beye, Martin and Fondell, Mattis and Quevedo, Wilson and Kennedy, Brian and Hantschmann, Markus and Pietzsch, Annette and van Kuiken, Benjamin E. and Ross, Matthew and Minitti, Michael P. and Moeller, Stefan P. and Schlotter, William F. and Khalil, Munira and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1115}, issn = {1866-8372}, doi = {10.25932/publishup-43687}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436873}, pages = {7}, year = {2017}, abstract = {The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort time-scale.}, language = {en} } @misc{Omel'chenko2019, author = {Omel'chenko, Oleh}, title = {Travelling chimera states in systems of phase oscillators with asymmetric nonlocal coupling}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51814}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518141}, pages = {611 -- 642}, year = {2019}, abstract = {We study travelling chimera states in a ring of nonlocally coupled heterogeneous (with Lorentzian distribution of natural frequencies) phase oscillators. These states are coherence-incoherence patterns moving in the lateral direction because of the broken reflection symmetry of the coupling topology. To explain the results of direct numerical simulations we consider the continuum limit of the system. In this case travelling chimera states correspond to smooth travelling wave solutions of some integro-differential equation, called the Ott-Antonsen equation, which describes the long time coarse-grained dynamics of the oscillators. Using the Lyapunov-Schmidt reduction technique we suggest a numerical approach for the continuation of these travelling waves. Moreover, we perform their linear stability analysis and show that travelling chimera states can lose their stability via fold and Hopf bifurcations. Some of the Hopf bifurcations turn out to be supercritical resulting in the observation of modulated travelling chimera states.}, language = {en} } @misc{MatternPudellDumesniletal.2023, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Dumesnil, Karine and Reppert, Alexander von and Bargheer, Matias}, title = {Towards shaping picosecond strain pulses via magnetostrictive transducers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1321}, issn = {1866-8372}, doi = {10.25932/publishup-58886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588868}, pages = {7}, year = {2023}, abstract = {Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.}, language = {en} } @misc{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1313}, issn = {1866-8372}, doi = {10.25932/publishup-58596}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585967}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} } @misc{KoseskaZaikinKurthsetal.2009, author = {Koseska, Aneta and Zaikin, Alexey and Kurths, J{\"u}rgen and Garc{\´i}a-Ojalvo, Jordi}, title = {Timing cellular decision making under noise via cell-cell communication}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45260}, year = {2009}, abstract = {Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words , the summation performed by the cell population would average out the noise and reduce its detrimental impact.}, language = {en} } @misc{CherstvyVinodAghionetal.2017, author = {Cherstvy, Andrey G. and Vinod, Deepak and Aghion, Erez and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Time averaging, ageing and delay analysis of financial time series}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400541}, pages = {11}, year = {2017}, abstract = {We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.}, language = {en} } @misc{SarhanKoopmanSchuetzetal.2018, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {698}, issn = {1866-8372}, doi = {10.25932/publishup-42719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427197}, pages = {8}, year = {2018}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @misc{ŚlęzakMetzlerMagdziarz2018, author = {Ślęzak, Jakub and Metzler, Ralf and Magdziarz, Marcin}, title = {Superstatistical generalised Langevin equation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409315}, pages = {25}, year = {2018}, abstract = {Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.}, language = {en} } @misc{ZhongCausaMooreetal.2020, author = {Zhong, Yufei and Causa, Martina and Moore, Gareth John and Krauspe, Philipp and Xiao, Bo and G{\"u}nther, Florian and Kublitski, Jonas and BarOr, Eyal and Zhou, Erjun and Banerji, Natalie}, title = {Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51193}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511936}, pages = {12}, year = {2020}, abstract = {Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17\% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.}, language = {en} } @misc{GoychukGoychuk2015, author = {Goychuk, Igor and Goychuk, Andriy}, title = {Stochastic Wilson}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77814}, year = {2015}, abstract = {We consider a simple Markovian class of the stochastic Wilson-Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around -1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence.}, language = {en} } @misc{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk: transport and first-passage dynamics under soft resetting strategies}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56040}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560402}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @misc{MardoukhiChechkinMetzler2020, author = {Mardoukhi, Yousof and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Spurious ergodicity breaking in normal and fractional Ornstein-Uhlenbeck process}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {981}, issn = {1866-8372}, doi = {10.25932/publishup-47487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474875}, pages = {20}, year = {2020}, abstract = {The Ornstein-Uhlenbeck process is a stationary and ergodic Gaussian process, that is fully determined by its covariance function and mean. We show here that the generic definitions of the ensemble- and time-averaged mean squared displacements fail to capture these properties consistently, leading to a spurious ergodicity breaking. We propose to remedy this failure by redefining the mean squared displacements such that they reflect unambiguously the statistical properties of any stochastic process. In particular we study the effect of the initial condition in the Ornstein-Uhlenbeck process and its fractional extension. For the fractional Ornstein-Uhlenbeck process representing typical experimental situations in crowded environments such as living biological cells, we show that the stationarity of the process delicately depends on the initial condition.}, language = {en} } @misc{SposiniMetzlerOshanin2019, author = {Sposini, Vittoria and Metzler, Ralf and Oshanin, Gleb}, title = {Single-trajectory spectral analysis of scaled Brownian motion}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {753}, issn = {1866-8372}, doi = {10.25932/publishup-43652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436522}, pages = {16}, year = {2019}, abstract = {Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement.}, language = {en} } @misc{CoutoCruzErtanetal.2017, author = {Couto, Rafael C. and Cruz, Vinicius V. and Ertan, Emelie and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimar{\~a}es, Freddy F. and {\AA}gren, Hans and Gel'mukhanov, Faris and Odelius, Michael and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Selective gating to vibrational modes through resonant X-ray scattering}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1124}, issn = {1866-8372}, doi = {10.25932/publishup-43692}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436926}, pages = {9}, year = {2017}, abstract = {The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.}, language = {en} } @misc{JeonChechkinMetzler2014, author = {Jeon, Jae-Hyung and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76302}, pages = {15811 -- 15817}, year = {2014}, abstract = {Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used.}, language = {en} } @misc{ReindlFinchSchaffenrothetal.2018, author = {Reindl, Nicole and Finch, Nicolle L. and Schaffenroth, Veronika and Barstow, Martin A. and Casewell, Sarah L. and Geier, Stephan and Bertolami Miller, Marcelo Miguel and Taubenberger, Stefan}, title = {Revealing the true nature of Hen2-428}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1129}, issn = {1866-8372}, doi = {10.25932/publishup-45970}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459703}, pages = {9}, year = {2018}, abstract = {The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process.}, language = {en} } @misc{WangCherstvyMetzleretal.2022, author = {Wang, Wei and Cherstvy, Andrey G. and Metzler, Ralf and Sokolov, Igor M.}, title = {Restoring ergodicity of stochastically reset anomalous-diffusion processes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56037}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560377}, pages = {013161-1 -- 013161-13}, year = {2022}, abstract = {How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle's motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems.}, language = {en} } @misc{WeberBahrsAlirezaeizanjanietal.2019, author = {Weber, Ariane and Bahrs, Marco and Alirezaeizanjani, Zahra and Zhang, Xingyu and Beta, Carsten and Zaburdaev, Vasily}, title = {Rectification of Bacterial Diffusion in Microfluidic Labyrinths}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {801}, issn = {1866-8372}, doi = {10.25932/publishup-44122}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441222}, pages = {11}, year = {2019}, abstract = {In nature as well as in the context of infection and medical applications, bacteria often have to move in highly complex environments such as soil or tissues. Previous studies have shown that bacteria strongly interact with their surroundings and are often guided by confinements. Here, we investigate theoretically how the dispersal of swimming bacteria can be augmented by microfluidic environments and validate our theoretical predictions experimentally. We consider a system of bacteria performing the prototypical run-and-tumble motion inside a labyrinth with square lattice geometry. Narrow channels between the square obstacles limit the possibility of bacteria to reorient during tumbling events to an area where channels cross. Thus, by varying the geometry of the lattice it might be possible to control the dispersal of cells. We present a theoretical model quantifying diffusive spreading of a run-and-tumble random walker in a square lattice. Numerical simulations validate our theoretical predictions for the dependence of the diffusion coefficient on the lattice geometry. We show that bacteria moving in square labyrinths exhibit enhanced dispersal as compared to unconfined cells. Importantly, confinement significantly extends the duration of the phase with strongly non-Gaussian diffusion, when the geometry of channels is imprinted in the density profiles of spreading cells. Finally, in good agreement with our theoretical findings, we observe the predicted behaviors in experiments with E. coli bacteria swimming in a square lattice labyrinth created in amicrofluidic device. Altogether, our comprehensive understanding of bacterial dispersal in a simple two-dimensional labyrinth makes the first step toward the analysis of more complex geometries relevant for real world applications.}, language = {en} } @misc{ZeuschnerMatternPudelletal.2021, author = {Zeuschner, Steffen Peer and Mattern, Maximilian and Pudell, Jan-Etienne and Reppert, Alexander von and R{\"o}ssle, Matthias and Leitenberger, Wolfram and Schwarzkopf, Jutta and Boschker, Jos and Herzog, Marc and Bargheer, Matias}, title = {Reciprocal space slicing}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1137}, issn = {1866-8372}, doi = {10.25932/publishup-49976}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499761}, pages = {13}, year = {2021}, abstract = {An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.}, language = {en} } @misc{RosenblumPikovskijKuehnetal.2021, author = {Rosenblum, Michael and Pikovskij, Arkadij and K{\"u}hn, Andrea A. and Busch, Johannes Leon}, title = {Real-time estimation of phase and amplitude with application to neural data}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54963}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549630}, pages = {11}, year = {2021}, abstract = {Computation of the instantaneous phase and amplitude via the Hilbert Transform is a powerful tool of data analysis. This approach finds many applications in various science and engineering branches but is not proper for causal estimation because it requires knowledge of the signal's past and future. However, several problems require real-time estimation of phase and amplitude; an illustrative example is phase-locked or amplitude-dependent stimulation in neuroscience. In this paper, we discuss and compare three causal algorithms that do not rely on the Hilbert Transform but exploit well-known physical phenomena, the synchronization and the resonance. After testing the algorithms on a synthetic data set, we illustrate their performance computing phase and amplitude for the accelerometer tremor measurements and a Parkinsonian patient's beta-band brain activity.}, language = {en} } @misc{MetzlerBauerRasmussenetal.2015, author = {Metzler, Ralf and Bauer, Maximilian and Rasmussen, Emil S. and Lomholt, Michael A.}, title = {Real sequence effects on the search dynamics of transcription factors on DNA}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79411}, year = {2015}, abstract = {Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.}, language = {en} } @misc{SposiniChechkinFlavioetal.2018, author = {Sposini, Vittoria and Chechkin, Aleksei V. and Flavio, Seno and Pagnini, Gianni and Metzler, Ralf}, title = {Random diffusivity from stochastic equations}, series = {New Journal of Physics}, journal = {New Journal of Physics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409743}, pages = {33}, year = {2018}, abstract = {Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.}, language = {en} } @misc{ŚlęzakBurneckiMetzler2019, author = {Ślęzak, Jakub and Burnecki, Krzysztof and Metzler, Ralf}, title = {Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {765}, issn = {1866-8372}, doi = {10.25932/publishup-43792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437923}, pages = {18}, year = {2019}, abstract = {Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as 'superstatistics' or 'diffusing diffusivity'. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion.}, language = {en} } @misc{Goychuk2016, author = {Goychuk, Igor}, title = {Quantum ergodicity breaking in semi-classical electron transfer dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102264}, pages = {11}, year = {2016}, abstract = {Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze(MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings.}, language = {en} } @misc{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570018}, pages = {8}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @misc{SchwarzlGodecMetzler2017, author = {Schwarzl, Maria and Godec, Aljaž and Metzler, Ralf}, title = {Quantifying non-ergodicity of anomalous diffusion with higher order moments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402109}, pages = {18}, year = {2017}, abstract = {Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.}, language = {en} } @misc{MakwanaYan2020, author = {Makwana, Kirit D. and Yan, Huirong}, title = {Properties of magnetohydrodynamic modes in compressively driven plasma turbulence}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {10}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, publisher = {American Physical Society (APS)}, address = {College Park}, issn = {1866-8372}, doi = {10.25932/publishup-53160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-531607}, pages = {17}, year = {2020}, abstract = {We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed.}, language = {en} } @misc{MannRahmstorfKornhuberetal.2018, author = {Mann, Michael E. and Rahmstorf, Stefan and Kornhuber, Kai and Steinman, Byron A. and Miller, Sonya K. and Petri, Stefan and Coumou, Dim}, title = {Projected changes in persistent extreme summer weather events}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {994}, issn = {1866-8372}, doi = {10.25932/publishup-44641}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446416}, pages = {12}, year = {2018}, abstract = {Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50\% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events.}, language = {en} } @misc{WenzLevermannWillneretal.2020, author = {Wenz, Leonie and Levermann, Anders and Willner, Sven N. and Otto, Christian and Kuhla, Kilian}, title = {Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52581}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525819}, pages = {16}, year = {2020}, abstract = {After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a "no-trade-deal" situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term.}, language = {en} } @misc{PalyulinAlaNissilaMetzler2014, author = {Palyulin, Vladimir V. and Ala-Nissila, Tapio and Metzler, Ralf}, title = {Polymer translocation: the first two decades and the recent diversification}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76287}, pages = {9016 -- 9037}, year = {2014}, abstract = {Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis.}, language = {en} } @misc{SchimkaLomadzeRabeetal.2017, author = {Schimka, Selina and Lomadze, Nino and Rabe, Maren and Kopyshev, Alexey and Lehmann, Maren and von Klitzing, Regine and Rumyantsev, Artem M. and Kramarenko, Elena Yu. and Santer, Svetlana}, title = {Photosensitive microgels containing azobenzene surfactants of different charges}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {461}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413528}, year = {2017}, abstract = {We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans-state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine.}, language = {en} } @misc{DasPradhan2015, author = {Das, Samir and Pradhan, Basudev}, title = {Photophysical and photochemical properties of a family of isoelectronic tris chelated ruthenium(II) aza-/azo-aromatic complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102320}, pages = {73726 -- 73731}, year = {2015}, abstract = {We have investigated the electrochemical, spectroscopic and electroluminescent properties of a family of aza-aromatic complexes of ruthenium of type [RuII(bpy/phen)2(L)]2+ (4d6) with three isomeric L ligands, where, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline and the L ligands are 3-(2-pyridyl)[1,2,4]triazolo[1,5-a]pyridine (L1), 3-(2-pyridyl[1,2,3])triazolo[1,5-a]pyridine (L2) and 2-(2-pyridyl)[1,2,4]triazolo[1,5-a]pyridine (L3). The complexes display two bands in the visible region near 410-420 and 440-450 nm. The complexes are diamagnetic and show well defined 1H NMR lines. They are electroactive in acetonitrile solution and exhibit a well defined RuII/RuIII couple near 1.20 to 1.30 V and -1.40 to -1.50 V due to ligand reduction versus Saturated Calomel Electrode (SCE). The solutions are also luminescent, with peaks are near 600 nm. All the complexes are electroluminescent in nature with peaks lying near 580 nm. L1 and L3 ligated complexes with two bpy co-ligands show weak photoluminescence (PL) but stronger electroluminescence (EL) compared to corresponding L2 ligated analogues.}, language = {en} } @misc{KirchartzMarquezStolterfohtetal.2020, author = {Kirchartz, Thomas and M{\´a}rquez, Jos{\´e} A. and Stolterfoht, Martin and Unold, Thomas}, title = {Photoluminescence-based characterization of halide perovskites for photovoltaics}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {26}, issn = {1866-8372}, doi = {10.25932/publishup-51970}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519702}, pages = {23}, year = {2020}, abstract = {Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials.}, language = {en} } @misc{SharmaBekirLomadzeetal.2020, author = {Sharma, Anjali and Bekir, Marek and Lomadze, Nino and Santer, Svetlana}, title = {Photo-Isomerization Kinetics of Azobenzene Containing Surfactant Conjugated with Polyelectrolyte}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1101}, issn = {1866-8372}, doi = {10.25932/publishup-48942}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489427}, pages = {14}, year = {2020}, abstract = {Ionic complexation of azobenzene-containing surfactants with any type of oppositely charged soft objects allows for making them photo-responsive in terms of their size, shape and surface energy. Investigation of the photo-isomerization kinetic and isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged objects is a necessary prerequisite for understanding the structural response of photo-sensitive complexes. Here, we report on photo-isomerization kinetics of a photo-sensitive surfactant in the presence of poly(acrylic acid, sodium salt). We show that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in aqueous solution. In a photo-stationary state, the ratio between the trans and cis isomers is shifted to a higher trans-isomer concentration for all irradiation wavelengths. This is explained by the formation of surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration and inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates.}, language = {en} } @misc{NiebuhrHeuer2017, author = {Niebuhr, Mario and Heuer, Axel}, title = {Phase measurement and far-field reconstruction on externally coupled laser diode arrays}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402140}, pages = {6}, year = {2017}, abstract = {Passive coherent combination of several discrete low power laser diodes is a promising way to overcome the issue of degrading beam quality when scaling single emitters to > 10W output power. Such systems would be an efficient alternative to current high power sources, yet they suffer from fatal coherence loss when operated well above threshold. We present a new way to obtain detailed coherence information for laser diode arrays using a spatial light modulator to help identify the underlying decoherence processes. Reconstruction tests of the emitted far-field distribution are conducted to evaluate the performance of our setup.}, language = {en} } @misc{ReppertPuddellKocetal.2016, author = {Reppert, Alexander von and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98710}, pages = {11}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} }