@unpublished{AcharyaActisAghajanietal.2013, author = {Acharya, B. S. and Actis, M. and Aghajani, T. and Agnetta, G. and Aguilar, J. and Aharonian, Felix A. and Ajello, M. and Akhperjanian, A. G. and Alcubierre, M. and Aleksic, J. and Alfaro, R. and Aliu, E. and Allafort, A. J. and Allan, D. and Allekotte, I. and Amato, E. and Anderson, J. and Ang{\"u}ner, Ekrem Oǧuzhan and Antonelli, L. A. and Antoranz, P. and Aravantinos, A. and Arlen, T. and Armstrong, T. and Arnaldi, H. and Arrabito, L. and Asano, K. and Ashton, T. and Asorey, H. G. and Awane, Y. and Baba, H. and Babic, A. and Baby, N. and Baehr, J. and Bais, A. and Baixeras, C. and Bajtlik, S. and Balbo, M. and Balis, D. and Balkowski, C. and Bamba, A. and Bandiera, R. and Barber, A. and Barbier, C. and Barcelo, M. and Barnacka, Anna and Barnstedt, J{\"u}rgen and Barres de Almeida, U. and Barrio, J. A. and Basili, A. and Basso, S. and Bastieri, D. and Bauer, C. and Baushev, Anton N. and Becerra Gonzalez, J. and Becherini, Yvonne and Bechtol, K. C. and Tjus, J. Becker and Beckmann, Volker and Bednarek, W. and Behera, B. and Belluso, M. and Benbow, W. and Berdugo, J. and Berger, K. and Bernard, F. and Bernardino, T. and Bernl{\"o}hr, K. and Bhat, N. and Bhattacharyya, S. and Bigongiari, C. and Biland, A. and Billotta, S. and Bird, T. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Bitossi, M. and Blake, S. and Blanch Bigas, O. and Blasi, P. and Bobkov, A. A. and Boccone, V. and Boettcher, Markus and Bogacz, L. and Bogart, J. and Bogdan, M. and Boisson, Catherine and Boix Gargallo, J. and Bolmont, J. and Bonanno, G. and Bonardi, A. and Bonev, T. and Bonifacio, P. and Bonnoli, G. and Bordas, Pol and Borgland, A. W. and Borkowski, Janett and Bose, R. and Botner, O. and Bottani, A. and Bouchet, L. and Bourgeat, M. and Boutonnet, C. and Bouvier, A. and Brau-Nogue, S. and Braun, I. and Bretz, T. and Briggs, M. S. and Bringmann, T. and Brook, P. and Brun, Pierre and Brunetti, L. and Buanes, T. and Buckley, J. H. and Buehler, R. and Bugaev, V. and Bulgarelli, A. and Bulik, Tomasz and Busetto, G. and Buson, S. and Byrum, K. and Cailles, M. and Cameron, R. A. and Camprecios, J. and Canestrari, R. and Cantu, S. and Capalbi, M. and Caraveo, P. A. and Carmona, E. and Carosi, A. and Carr, John and Carton, P. H. and Casanova, Sabrina and Casiraghi, M. and Catalano, O. and Cavazzani, S. and Cazaux, S. and Cerruti, M. and Chabanne, E. and Chadwick, Paula M. and Champion, C. and Chen, Andrew and Chiang, J. and Chiappetti, L. and Chikawa, M. and Chitnis, V. R. and Chollet, F. and Chudoba, J. and Cieslar, M. and Cillis, A. N. and Cohen-Tanugi, J. and Colafrancesco, Sergio and Colin, P. and Calome, J. and Colonges, S. and Compin, M. and Conconi, P. and Conforti, V. and Connaughton, V. and Conrad, Jan and Contreras, J. L. and Coppi, P. and Corona, P. and Corti, D. and Cortina, J. and Cossio, L. and Costantini, H. and Cotter, G. and Courty, B. and Couturier, S. and Covino, S. and Crimi, G. and Criswell, S. J. and Croston, J. and Cusumano, G. and Dafonseca, M. and Dale, O. and Daniel, M. and Darling, J. and Davids, I. and Dazzi, F. and De Angelis, A. and De Caprio, V. and De Frondat, F. and de Gouveia Dal Pino, E. M. and de la Calle, I. and De La Vega, G. A. and Lopez, R. de los Reyes and De Lotto, B. and De Luca, A. and de Mello Neto, J. R. T. and de Naurois, M. and de Oliveira, Y. and de Ona Wilhelmi, E. and de Souza, V. and Decerprit, G. and Decock, G. and Deil, C. and Delagnes, E. and Deleglise, G. and Delgado, C. and Della Volpe, D. and Demange, P. and Depaola, G. and Dettlaff, A. and Di Paola, A. and Di Pierro, F. and Diaz, C. and Dick, J. and Dickherber, R. and Dickinson, H. and Diez-Blanco, V. and Digel, S. and Dimitrov, D. and Disset, G. and Djannati-Ata{\"i}, A. and Doert, M. and Dohmke, M. and Domainko, W. and Prester, Dijana Dominis and Donat, A. and Dorner, D. and Doro, M. and Dournaux, J-L. and Drake, G. and Dravins, D. and Drury, L. and Dubois, F. and Dubois, R. and Dubus, G. and Dufour, C. and Dumas, D. and Dumm, J. and Durand, D. and Dyks, J. and Dyrda, M. and Ebr, J. and Edy, E. and Egberts, Kathrin and Eger, P. and Einecke, S. and Eleftheriadis, C. and Elles, S. and Emmanoulopoulos, D. and Engelhaupt, D. and Enomoto, R. and Ernenwein, J-P and Errando, M. and Etchegoyen, A. and Evans, P. and Falcone, A. and Fantinel, D. and Farakos, K. and Farnier, C. and Fasola, G. and Favill, B. and Fede, E. and Federici, S. and Fegan, S. and Feinstein, F. and Ferenc, D. and Ferrando, P. and Fesquet, M. and Fiasson, A. and Fillin-Martino, E. and Fink, D. and Finley, C. and Finley, J. P. and Fiorini, M. and Firpo Curcoll, R. and Flores, H. and Florin, D. and Focke, W. and Foehr, C. and Fokitis, E. and Font, L. and Fontaine, G. and Fornasa, M. and Foerster, A. and Fortson, L. and Fouque, N. and Franckowiak, A. and Fransson, C. and Fraser, G. and Frei, R. and Albuquerque, I. F. M. and Fresnillo, L. and Fruck, C. and Fujita, Y. and Fukazawa, Y. and Fukui, Y. and Funk, S. and Gaebele, W. and Gabici, S. and Gabriele, R. and Gadola, A. and Galante, N. and Gall, D. and Gallant, Y. and Gamez-Garcia, J. and Garcia, B. and Garcia Lopez, R. and Gardiol, D. and Garrido, D. and Garrido, L. and Gascon, D. and Gaug, M. and Gaweda, J. and Gebremedhin, L. and Geffroy, N. and Gerard, L. and Ghedina, A. and Ghigo, M. and Giannakaki, E. and Gianotti, F. and Giarrusso, S. and Giavitto, G. and Giebels, B. and Gika, V. and Giommi, P. and Girard, N. and Giro, E. and Giuliani, A. and Glanzman, T. and Glicenstein, J. -F. and Godinovic, N. and Golev, V. and Gomez Berisso, M. and Gomez-Ortega, J. and Gonzalez, M. M. and Gonzalez, A. and Gonzalez, F. and Gonzalez Munoz, A. and Gothe, K. S. and Gougerot, M. and Graciani, R. and Grandi, P. and Granena, F. and Granot, J. and Grasseau, G. and Gredig, R. and Green, A. and Greenshaw, T. and Gregoire, T. and Grimm, O. and Grube, J. and Grudzinska, M. and Gruev, V. and Gruenewald, S. and Grygorczuk, J. and Guarino, V. and Gunji, S. and Gyuk, G. and Hadasch, D. and Hagiwara, R. and Hahn, J. and Hakansson, N. and Hallgren, A. and Hamer Heras, N. and Hara, S. and Hardcastle, M. J. and Harris, J. and Hassan, T. and Hatanaka, K. and Haubold, T. and Haupt, A. and Hayakawa, T. and Hayashida, M. and Heller, R. and Henault, F. and Henri, G. and Hermann, G. and Hermel, R. and Herrero, A. and Hidaka, N. and Hinton, J. and Hoffmann, D. and Hofmann, W. and Hofverberg, P. and Holder, J. and Horns, D. and Horville, D. and Houles, J. and Hrabovsky, M. and Hrupec, D. and Huan, H. and Huber, B. and Huet, J. -M. and Hughes, G. and Humensky, T. B. and Huovelin, J. and Ibarra, A. and Illa, J. M. and Impiombato, D. and Incorvaia, S. and Inoue, S. and Inoue, Y. and Ioka, K. and Ismailova, E. and Jablonski, C. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jean, P. and Jeanney, C. and Jimenez, J. J. and Jogler, T. and Johnson, T. and Journet, L. and Juffroy, C. and Jung, I. and Kaaret, P. and Kabuki, S. and Kagaya, M. and Kakuwa, J. and Kalkuhl, C. and Kankanyan, R. and Karastergiou, A. and Kaercher, K. and Karczewski, M. and Karkar, S. and Kasperek, Aci. and Kastana, D. and Katagiri, H. and Kataoka, J. and Katarzynski, K. and Katz, U. and Kawanaka, N. and Kellner-Leidel, B. and Kelly, H. and Kendziorra, E. and Khelifi, B. and Kieda, D. B. and Kifune, T. and Kihm, T. and Kishimoto, T. and Kitamoto, K. and Kluzniak, W. and Knapic, C. and Knapp, J. w and Knoedlseder, J. and Koeck, F. and Kocot, J. and Kodani, K. and Koehne, J. -H. and Kohri, K. and Kokkotas, K. and Kolitzus, D. and Komin, N. and Kominis, I. and Konno, Y. and Koeppel, H. and Korohoda, P. and Kosack, K. and Koss, G. and Kossakowski, R. and Kostka, P. and Koul, R. and Kowal, G. and Koyama, S. and Koziol, J. and Kraehenbuehl, T. and Krause, J. and Krawzcynski, H. and Krennrich, F. and Krepps, A. and Kretzschmann, A. and Krobot, R. and Krueger, P. and Kubo, H. and Kudryavtsev, V. A. and Kushida, J. and Kuznetsov, A. and La Barbera, A. and La Palombara, N. and La Parola, V. and La Rosa, G. and Lacombe, K. and Lamanna, G. and Lande, J. and Languignon, D. and Lapington, J. and Laporte, P. and Lavalley, C. and Le Flour, T. and Le Padellec, A. and Lee, S. -H. and Lee, W. H. and Leigui de Oliveira, M. A. and Lelas, D. and Lenain, J. -P. and Leopold, D. J. and Lerch, T. and Lessio, L. and Lieunard, B. and Lindfors, E. and Liolios, A. and Lipniacka, A. and Lockart, H. and Lohse, T. and Lombardi, S. and Lopatin, A. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorca, A. and Lorenz, E. and Lubinski, P. and Lucarelli, F. and Luedecke, H. and Ludwin, J. and Luque-Escamilla, P. L. and Lustermann, W. and Luz, O. and Lyard, E. and Maccarone, M. C. and Maccarone, T. J. and Madejski, G. M. and Madhavan, A. and Mahabir, M. and Maier, G. and Majumdar, P. and Malaguti, G. and Maltezos, S. and Manalaysay, A. and Mancilla, A. and Mandat, D. and Maneva, G. and Mangano, A. and Manigot, P. and Mannheim, K. and Manthos, I. and Maragos, N. and Marcowith, Alexandre and Mariotti, M. and Marisaldi, M. and Markoff, S. and Marszalek, A. and Martens, C. and Marti, J. and Martin, J-M. and Martin, P. and Martinez, G. and Martinez, F. and Martinez, M. and Masserot, A. and Mastichiadis, A. and Mathieu, A. and Matsumoto, H. and Mattana, F. and Mattiazzo, S. and Maurin, G. and Maxfield, S. and Maya, J. and Mazin, D. and Mc Comb, L. and McCubbin, N. and McHardy, I. and McKay, R. and Medina, C. and Melioli, C. and Melkumyan, D. and Mereghetti, S. and Mertsch, P. and Meucci, M. and Michalowski, J. and Micolon, P. and Mihailidis, A. and Mineo, T. and Minuti, M. and Mirabal, N. and Mirabel, F. and Miranda, J. M. and Mirzoyan, R. and Mizuno, T. and Moal, B. and Moderski, R. and Mognet, I. and Molinari, E. and Molinaro, M. and Montaruli, T. and Monteiro, I. and Moore, P. and Moralejo Olaizola, A. and Mordalska, M. and Morello, C. and Mori, K. and Mottez, F. and Moudden, Y. and Moulin, Emmanuel and Mrusek, I. and Mukherjee, R. and Munar-Adrover, P. and Muraishi, H. and Murase, K. and Murphy, A. and Nagataki, S. and Naito, T. and Nakajima, D. and Nakamori, T. and Nakayama, K. and Naumann, C. L. and Naumann, D. and Naumann-Godo, M. and Nayman, P. and Nedbal, D. and Neise, D. and Nellen, L. and Neustroev, V. and Neyroud, N. and Nicastro, L. and Nicolau-Kuklinski, J. and Niedzwiecki, A. and Niemiec, J. and Nieto, D. and Nikolaidis, A. and Nishijima, K. and Nolan, S. and Northrop, R. and Nosek, D. and Nowak, N. and Nozato, A. and O'Brien, P. and Ohira, Y. and Ohishi, M. and Ohm, S. and Ohoka, H. and Okuda, T. and Okumura, A. and Olive, J. -F. and Ong, R. A. and Orito, R. and Orr, M. and Osborne, J. and Ostrowski, M. and Otero, L. A. and Otte, N. and Ovcharov, E. and Oya, I. and Ozieblo, A. and Padilla, L. and Paiano, S. and Paillot, D. and Paizis, A. and Palanque, S. and Palatka, M. and Pallota, J. and Panagiotidis, K. and Panazol, J. -L. and Paneque, D. and Panter, M. and Paoletti, R. and Papayannis, Alexandros and Papyan, G. and Paredes, J. M. and Pareschi, G. and Parks, G. and Parraud, J. -M. and Parsons, D. and Arribas, M. Paz and Pech, M. and Pedaletti, G. and Pelassa, V. and Pelat, D. and Perez, M. D. C. and Persic, M. and Petrucci, P-O and Peyaud, B. and Pichel, A. and Pita, S. and Pizzolato, F. and Platos, L. and Platzer, R. and Pogosyan, L. and Pohl, M. and Pojmanski, G. and Ponz, J. D. and Potter, W. and Poutanen, J. and Prandini, E. and Prast, J. and Preece, R. and Profeti, F. and Prokoph, H. and Prouza, M. and Proyetti, M. and Puerto-Gimenez, I. and Puehlhofer, G. and Puljak, I. and Punch, M. and Pyziol, R. and Quel, E. J. and Quinn, J. and Quirrenbach, A. and Racero, E. and Rajda, P. J. and Ramon, P. and Rando, R. and Rannot, R. C. and Rataj, M. and Raue, M. and Reardon, P. and Reimann, O. and Reimer, A. and Reimer, O. and Reitberger, K. and Renaud, M. and Renner, S. and Reville, B. and Rhode, W. and Ribo, M. and Ribordy, M. and Richer, M. G. and Rico, J. and Ridky, J. and Rieger, F. and Ringegni, P. and Ripken, J. and Ristori, P. R. and Riviere, A. and Rivoire, S. and Rob, L. and Roeser, U. and Rohlfs, R. and Rojas, G. and Romano, Patrizia and Romaszkan, W. and Romero, G. E. and Rosen, S. and Lees, S. Rosier and Ross, D. and Rouaix, G. and Rousselle, J. and Rousselle, S. and Rovero, A. C. and Roy, F. and Royer, S. and Rudak, B. and Rulten, C. and Rupinski, M. and Russo, F. and Ryde, F. and Sacco, B. and Saemann, E. O. and Saggion, A. and Safiakian, V. and Saito, K. and Saito, T. and Saito, Y. and Sakaki, N. and Sakonaka, R. and Salini, A. and Sanchez, F. and Sanchez-Conde, M. and Sandoval, A. and Sandaker, H. and Sant'Ambrogio, E. and Santangelo, A. and Santos, E. M. and Sanuy, A. and Sapozhnikov, L. and Sarkar, S. and Sartore, N. and Sasaki, H. and Satalecka, K. and Sawada, M. and Scalzotto, V. and Scapin, V. and Scarcioffolo, M. and Schafer, J. and Schanz, T. and Schlenstedt, S. and Schlickeiser, R. and Schmidt, T. and Schmoll, J. and Schovanek, P. and Schroedter, M. and Schultz, C. and Schultze, J. and Schulz, A. and Schure, K. and Schwab, T. and Schwanke, U. and Schwarz, J. and Schwarzburg, S. and Schweizer, T. and Schwemmer, S. and Segreto, A. and Seiradakis, J. -H. and Sembroski, G. H. and Seweryn, K. and Sharma, M. and Shayduk, M. and Shellard, R. C. and Shi, J. and Shibata, T. and Shibuya, A. and Shum, E. and Sidoli, L. and Sidz, M. and Sieiro, J. and Sikora, M. and Silk, J. and Sillanpaa, A. and Singh, B. B. and Sitarek, J. and Skole, C. and Smareglia, R. and Smith, A. and Smith, D. and Smith, J. and Smith, N. and Sobczynska, D. and Sol, H. and Sottile, G. and Sowinski, M. and Spanier, F. and Spiga, D. and Spyrou, S. and Stamatescu, V. and Stamerra, A. and Starling, R. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steiner, S. and Stergioulas, N. and Sternberger, R. and Sterzel, M. and Stinzing, F. and Stodulski, M. and Straumann, U. and Strazzeri, E. and Stringhetti, L. and Suarez, A. and Suchenek, M. and Sugawara, R. and Sulanke, K. -H. and Sun, S. and Supanitsky, A. D. and Suric, T. and Sutcliffe, P. and Sykes, J. and Szanecki, M. and Szepieniec, T. and Szostek, A. and Tagliaferri, G. and Tajima, H. and Takahashi, H. and Takahashi, K. and Takalo, L. and Takami, H. and Talbot, C. and Tammi, J. and Tanaka, M. and Tanaka, S. and Tasan, J. and Tavani, M. and Tavernet, J. -P. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Tenzer, C. and Terada, Y. and Terrier, R. and Teshima, M. and Testa, V. and Tezier, D. and Thuermann, D. and Tibaldo, L. and Tibolla, O. and Tiengo, A. and Tluczykont, M. and Todero Peixoto, C. J. and Tokanai, F. and Tokarz, M. and Toma, K. and Torii, K. and Tornikoski, M. and Torres, D. F. and Torres, M. and Tosti, G. and Totani, T. and Toussenel, C. and Tovmassian, G. and Travnicek, P. and Trifoglio, M. and Troyano, I. and Tsinganos, K. and Ueno, H. and Umehara, K. and Upadhya, S. S. and Usher, T. and Uslenghi, M. and Valdes-Galicia, J. F. and Vallania, P. and Vallejo, G. and van Driel, W. and van Eldik, C. and Vandenbrouke, J. and Vanderwalt, J. and Vankov, H. and Vasileiadis, G. and Vassiliev, V. and Veberic, D. and Vegas, I. and Vercellone, S. and Vergani, S. and Veyssiere, C. and Vialle, J. P. and Viana, A. and Videla, M. and Vincent, P. and Vincent, S. and Vink, J. and Vlahakis, N. and Vlahos, L. and Vogler, P. and Vollhardt, A. and von Gunten, H. P. and Vorobiov, S. and Vuerli, C. and Waegebaert, V. and Wagner, R. and Wagner, R. G. and Wagner, S. and Wakely, S. P. and Walter, R. and Walther, T. and Warda, K. and Warwick, R. and Wawer, P. and Wawrzaszek, R. and Webb, N. and Wegner, P. and Weinstein, A. and Weitzel, Q. and Welsing, R. and Werner, M. and Wetteskind, H. and White, R. and Wierzcholska, A. and Wiesand, S. and Wilkinson, M. and Williams, D. A. and Willingale, R. and Winiarski, K. and Wischnewski, R. and Wisniewski, L. and Wood, M. and Woernlein, A. and Xiong, Q. and Yadav, K. K. and Yamamoto, H. and Yamamoto, T. and Yamazaki, R. and Yanagita, S. and Yebras, J. M. and Yelos, D. and Yoshida, A. and Yoshida, T. and Yoshikoshi, T. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zanin, R. and Zdziarski, A. and Zech, Alraune and Zhao, A. and Zhou, X. and Zietara, K. and Ziolkowski, J. and Ziolkowski, P. and Zitelli, V. and Zurbach, C. and Zychowski, P.}, title = {Introducing the CTA concept}, series = {Astroparticle physics}, volume = {43}, journal = {Astroparticle physics}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, organization = {CTA Consortium}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2013.01.007}, pages = {3 -- 18}, year = {2013}, abstract = {The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project.}, language = {en} } @unpublished{BraunFeudel1996, author = {Braun, Robert and Feudel, Fred}, title = {Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14099}, year = {1996}, abstract = {We have shown that the two-dimensional complex Ginzburg-Landau equation exhibits supertransient chaos in a certain parameter range. Using numerical methods this behavior is found near the transition line separating frozen spiral solutions from turbulence. Supertransient chaos seems to be a common phenomenon in extended spatiotemporal systems. These supertransients are characterized by an average transient lifetime which depends exponentially on the size of the system and are due to an underlying nonattracting chaotic set.}, language = {en} } @unpublished{BraunFeudelGuzdar1998, author = {Braun, Robert and Feudel, Fred and Guzdar, Parvez}, title = {The route to chaos for a two-dimensional externally driven flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14717}, year = {1998}, abstract = {We have numerically studied the bifurcations and transition to chaos in a two-dimensional fluid for varying values of the Reynolds number. These investigations have been motivated by experiments in fluids, where an array of vortices was driven by an electromotive force. In these experiments, successive changes leading to a complex motion of the vortices, due to increased forcing, have been explored [Tabeling, Perrin, and Fauve, J. Fluid Mech. 213, 511 (1990)]. We model this experiment by means of two-dimensional Navier-Stokes equations with a special external forcing, driving a linear chain of eight counter-rotating vortices, imposing stress-free boundary conditions in the vertical direction and periodic boundary conditions in the horizontal direction. As the strength of the forcing or the Reynolds number is raised, the original stationary vortex array becomes unstable and a complex sequence of bifurcations is observed. Several steady states and periodic branches and a period doubling cascade appear on the route to chaos. For increasing values of the Reynolds number, shear flow develops, for which the spatial scale is large compared to the scale of the forcing. Furthermore, we have investigated the influence of the aspect ratio of the container as well as the effect of no-slip boundary conditions at the top and bottom, on the bifurcation scenario.}, language = {en} } @unpublished{BraunFeudelSeehafer1997, author = {Braun, Robert and Feudel, Fred and Seehafer, Norbert}, title = {Bifurcations and chaos in an array of forced vortices}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14564}, year = {1997}, abstract = {We have studied the bifurcation structure of the incompressible two-dimensional Navier-Stokes equations with a special external forcing driving an array of 8×8 counterrotating vortices. The study has been motivated by recent experiments with thin layers of electrolytes showing, among other things, the formation of large-scale spatial patterns. As the strength of the forcing or the Reynolds number is raised the original stationary vortex array becomes unstable and a complex sequence of bifurcations is observed. The bifurcations lead to several periodic branches, torus and chaotic solutions, and other stationary solutions. Most remarkable is the appearance of solutions characterized by structures on spatial scales large compared to the scale of the forcing. We also characterize the different dynamic regimes by means of tracers injected into the fluid. Stretching rates and Hausdorff dimensions of convected line elements are calculated to quantify the mixing process. It turns out that for time-periodic velocity fields the mixing can be very effective.}, language = {en} } @unpublished{Buerger2014, author = {B{\"u}rger, Gerd}, title = {Comment on "Bias correction, quantile mapping, and downscaling: revisiting the inflation issue"}, series = {Journal of climate}, volume = {27}, journal = {Journal of climate}, number = {4}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0894-8755}, doi = {10.1175/JCLI-D-13-00184.1}, pages = {1819 -- 1820}, year = {2014}, abstract = {In a recent paper, Maraun describes the adverse effects of quantile mapping on downscaling. He argues that when large-scale GCM variables are rescaled directly to small-scale fields or even station data, genuine small-scale covariability is lost and replaced by uniform variability inherited from the larger scales. This leads to a misrepresentation mainly of areal means and long-term trends. This comment acknowledges the former point, although the argument is relatively old, but disagrees with the latter, showing that grid-size long-term trends can be different from local trends. Finally, because it is partly incorrectly addressed, some clarification is added regarding the inflation issue, stressing that neither randomization nor inflation is free of unverified assumptions.}, language = {en} } @unpublished{DemircanScheelSeehafer1999, author = {Demircan, Ayhan and Scheel, Stefan and Seehafer, Norbert}, title = {Heteroclinic behavior in rotating Rayleigh-B{\´e}nard convection}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14914}, year = {1999}, abstract = {We investigate numerically the appearance of heteroclinic behavior in a three-dimensional, buoyancy-driven fluid layer with stress-free top and bottom boundaries, a square horizontal periodicity with a small aspect ratio, and rotation at low to moderate rates about a vertical axis. The Prandtl number is 6.8. If the rotation is not too slow, the skewed-varicose instability leads from stationary rolls to a stationary mixed-mode solution, which in turn loses stability to a heteroclinic cycle formed by unstable roll states and connections between them. The unstable eigenvectors of these roll states are also of the skewed-varicose or mixed-mode type and in some parameter regions skewed-varicose like shearing oscillations as well as square patterns are involved in the cycle. Always present weak noise leads to irregular horizontal translations of the convection pattern and makes the dynamics chaotic, which is verified by calculating Lyapunov exponents. In the nonrotating case, the primary rolls lose, depending on the aspect ratio, stability to traveling waves or a stationary square pattern. We also study the symmetries of the solutions at the intermittent fixed points in the heteroclinic cycle.}, language = {en} } @unpublished{DickenMaass1995, author = {Dicken, Volker and Maaß, Peter}, title = {Wavelet-Galerkin methods for ill-posed problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13890}, year = {1995}, abstract = {Projection methods based on wavelet functions combine optimal convergence rates with algorithmic efficiency. The proofs in this paper utilize the approximation properties of wavelets and results from the general theory of regularization methods. Moreover, adaptive strategies can be incorporated still leading to optimal convergence rates for the resulting algorithms. The so-called wavelet-vaguelette decompositions enable the realization of especially fast algorithms for certain operators.}, language = {en} } @unpublished{EngbertScheffczykKrampeetal.1997, author = {Engbert, Ralf and Scheffczyk, Christian and Krampe, Ralf-Thomas and Rosenblum, Mikhael and Kurths, J{\"u}rgen and Kliegl, Reinhold}, title = {Tempo-induced transitions in polyrhythmic hand movements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14380}, year = {1997}, abstract = {We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual movements results from interactions between nonlinear control mechanisms with delayed feedback and stochastic timing components.}, language = {en} } @unpublished{FeudelSeehafer1995, author = {Feudel, Fred and Seehafer, Norbert}, title = {Bifurcations and pattern formation in a 2D Navier-Stokes fluid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13907}, year = {1995}, abstract = {We report on bifurcation studies for the incompressible Navier-Stokes equations in two space dimensions with periodic boundary conditions and an external forcing of the Kolmogorov type. Fourier representations of velocity and pressure have been used to approximate the original partial differential equations by a finite-dimensional system of ordinary differential equations, which then has been studied by means of bifurcation-analysis techniques. A special route into chaos observed for increasing Reynolds number or strength of the imposed forcing is described. It includes several steady states, traveling waves, modulated traveling waves, periodic and torus solutions, as well as a period-doubling cascade for a torus solution. Lyapunov exponents and Kaplan-Yorke dimensions have been calculated to characterize the chaotic branch. While studying the dynamics of the system in Fourier space, we also have transformed solutions to real space and examined the relation between the different bifurcations in Fourier space and toplogical changes of the streamline portrait. In particular, the time-dependent solutions, such as, e.g., traveling waves, torus, and chaotic solutions, have been characterized by the associated fluid-particle motion (Lagrangian dynamics).}, language = {en} } @unpublished{FeudelSeehafer1994, author = {Feudel, Fred and Seehafer, Norbert}, title = {On the bifurcation phenomena in truncations of the 2D Navier-Stokes equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13390}, year = {1994}, abstract = {We have studied bifurcation phenomena for the incompressable Navier-Stokes equations in two space dimensions with periodic boundary conditions. Fourier representations of velocity and pressure have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. Invariant sets, notably steady states, have been traced for varying Reynolds number or strength of the imposed forcing, respectively. A complete bifurcation sequence leading to chaos is described in detail, including the calculation of the Lyapunov exponents that characterize the resulting chaotic branch in the bifurcation diagram.}, language = {en} } @unpublished{FeudelSeehaferGalantietal.1996, author = {Feudel, Fred and Seehafer, Norbert and Galanti, Barak and R{\"u}diger, Sten}, title = {Symmetry breaking bifurcations for the magnetohydrodynamic equations with helical forcing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14317}, year = {1996}, abstract = {We have studied the bifurcations in a three-dimensional incompressible magnetofluid with periodic boundary conditions and an external forcing of the Arnold-Beltrami-Childress (ABC) type. Bifurcation-analysis techniques have been applied to explore the qualitative behavior of solution branches. Due to the symmetry of the forcing, the equations are equivariant with respect to a group of transformations isomorphic to the octahedral group, and we have paid special attention to symmetry-breaking effects. As the Reynolds number is increased, the primary nonmagnetic steady state, the ABC flow, loses its stability to a periodic magnetic state, showing the appearance of a generic dynamo effect; the critical value of the Reynolds number for the instability of the ABC flow is decreased compared to the purely hydrodynamic case. The bifurcating magnetic branch in turn is subject to secondary, symmetry-breaking bifurcations. We have traced periodic and quasi- periodic branches until they end up in chaotic states. In particular detail we have analyzed the subgroup symmetries of the bifurcating periodic branches, which are closely related to the spatial structure of the magnetic field.}, language = {en} } @unpublished{FeudelSeehaferSchmidtmann1995, author = {Feudel, Fred and Seehafer, Norbert and Schmidtmann, Olaf}, title = {Bifurcation phenomena of the magnetofluid equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13585}, year = {1995}, abstract = {We report on bifurcation studies for the incompressible magnetohydrodynamic equations in three space dimensions with periodic boundary conditions and a temporally constant external forcing. Fourier reprsentations of velocity, pressure and magnetic field have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then special numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. In a part of the calculations, in order to reduce the number of modes to be retained, the concept of approximate inertial manifolds has been applied. For varying (incereasing from zero) strength of the imposed forcing, or varying Reynolds number, respectively, time-asymptotic states, notably stable stationary solutions, have been traced. A primary non-magnetic steady state loses, in a Hopf bifurcation, stability to a periodic state with a non-vanishing magnetic field, showing the appearance of a generic dynamo effect. From now on the magnetic field is present for all values of the forcing. The Hopf bifurcation is followed by furhter, symmetry-breaking, bifurcations, leading finally to chaos. We pay particular attention to kinetic and magnetic helicities. The dynamo effect is observed only if the forcing is chosen such that a mean kinetic helicity is generated; otherwise the magnetic field diffuses away, and the time-asymptotic states are non-magnetic, in accordance with traditional kinematic dynamo theory.}, language = {en} } @unpublished{FeudelSeehaferSchmidtmann1995, author = {Feudel, Fred and Seehafer, Norbert and Schmidtmann, Olaf}, title = {Fluid helicity and dynamo bifurcations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13882}, year = {1995}, abstract = {The bifurcation behaviour of the 3D magnetohydrodynamic equations has been studied for external forcings of varying degree of helicity. With increasing strength of the forcing a primary non-magnetic steady state loses stability to a magnetic periodic state if the helicity exceeds a threshold value and to different non-magnetic states otherwise.}, language = {en} } @unpublished{Feudel1996, author = {Feudel, Ulrike}, title = {Komplexes Verhalten in multistabilen, schwach dissipativen Systemen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14412}, year = {1996}, abstract = {Anhand eines paradigmatischen Modellbeispiels werden die Konsequenzen der Koexistenz vieler Attraktoren auf die globale Dynamik schwach dissipativer Systeme studiert. Es wird gezeigt, dass diese Systeme eine sehr reichhaltige Dynamik besitzen und extrem sensitiv gegen{\"u}ber St{\"o}rungen in den Anfangsbedingungen sind. Diese Systeme zeichnen sich durch eine extrem hohe Flexibilit{\"a}t ihres Verhaltens aus.}, language = {de} } @unpublished{FoehlischdeGrootOdeliusetal.2014, author = {F{\"o}hlisch, Alexander and de Groot, F. M. F. and Odelius, Michael and Techert, Simone and Wernet, P.}, title = {Comment on "state-dependent electron delocalization dynamics at the solute-solvent interface: soft-x-ray absorption spectroscopy and lambda b initio calculations"}, series = {Physical review letters}, volume = {112}, journal = {Physical review letters}, number = {12}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.112.129302}, pages = {2}, year = {2014}, language = {en} } @unpublished{Gerhard2014, author = {Gerhard, Reimund}, title = {Sidney Lang - his collaboration with the University of Potsdam}, series = {Ferroelectrics}, volume = {472}, journal = {Ferroelectrics}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0015-0193}, doi = {10.1080/00150193.2014.967090}, pages = {5 -- 5}, year = {2014}, language = {en} } @unpublished{GuastiEngbertKrampeetal.2000, author = {Guasti, Giovanna and Engbert, Ralf and Krampe, Ralf T. and Kurths, J{\"u}rgen}, title = {Phase transitions, complexity, and stationarity in the production of polyrhythms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14933}, year = {2000}, abstract = {Contents: 1 Introduction 2 Experiment 3 Data 4 Symbolic dynamics 4.1 Symbolic dynamics as a tool for data analysis 4.2 2-symbols coding 4.3 3-symbols coding 5 Measures of complexity 5.1 Word statistics 5.2 Shannon entropy 6 Testing for stationarity 6.1 Stationarity 6.2 Time series of cycle durations 6.3 Chi-square test 7 Control parameters in the production of rhythms 8 Analysis of relative phases 9 Discussion 10 Outlook}, language = {en} } @unpublished{HenkelPieplow2014, author = {Henkel, Carsten and Pieplow, Gregor}, title = {Reply to Comment on 'Fully covariant radiation force on a polarizable particle'}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/11/118002}, pages = {8}, year = {2014}, abstract = {We argue that the theories of Volokitin and Persson (2014 New J. Phys. 16 118001), Dedkov and Kyasov (2008 J. Phys.: Condens. Matter 20 354006), and Pieplow and Henkel (2013 New J. Phys. 15 023027) agree on the electromagnetic force on a small, polarizable particle that is moving parallel to a planar, macroscopic body, as far as the contribution of evanescent waves is concerned. The apparent differences are discussed in detail and explained by choices of units and integral transformations. We point out in particular the role of the Lorentz contraction in the procedure used by Volokitin and Persson, where a macroscopic body is 'diluted' to obtain the force on a small particle. Differences that appear in the contribution of propagating photons are briefly mentioned.}, language = {en} } @unpublished{HilczerGerhardScott2014, author = {Hilczer, B{\"o}rn and Gerhard, Reimund and Scott, James F.}, title = {Special Issue of Ferroelectrics in Honor of S. B. Lang}, series = {Ferroelectrics}, volume = {472}, journal = {Ferroelectrics}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0015-0193}, doi = {10.1080/00150193.2014.964099}, pages = {VII -- VIII}, year = {2014}, language = {en} } @unpublished{Jansen1996, author = {Jansen, Wolfgang}, title = {A note on the determination of the type of communication areas}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14339}, year = {1996}, abstract = {The paper presents a method that determines, by standard numerical means, the type of mutual relations of fold and flip bifurcations (configured as a so-called communication area) of a map. Equation systems are developed for the computation of points where a transition between areas of different types occurs. Furthermore, it is shown that saddle area<->spring area transitions can exist which have not yet been considered in the literature. Analytical conditions of that transition are derived.}, language = {en} }