@phdthesis{Keles2021, author = {Keles, Engin}, title = {Atmospheric properties and dynamics of gaseous exoplanets inferred from high-resolution alkali line transmission spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {The characterization of exoplanets applying high-resolution transmission spectroscopy ini- tiated a new era making it possible to trace atmospheric signature at high altitudes in exoplanet atmospheres and to determine atmospheric properties which enrich our under- standing of the formation and evolution of the solar system. In contrast to what is observed in our solar system, where gaseous planets orbit at wide orbits, Jupiter type exoplanets were detected in foreign stellar systems surrounding their host stars within few days, in close orbits, the so called hot- and ultra-hot Jupiters. The most well studied ones are HD209458b and HD189733b, which are the first exoplanets where absorption is detected in their atmospheres, namely from the alkali line sodium. For hot Jupiters, the resonant alkali lines are the atmospheric species with one of the strongest absorption signatures, due to their large absorption cross-section. However, al- though the alkali lines sodium and potassium were detected in low-resolution observations for various giant exoplanets, potassium was absent in different high-resolution investiga- tions in contrast to sodium. The reason for this is quite puzzling, since both alkalis have very similar physical and chemical properties (e.g. condensation and ionization proper- ties). Obtaining high-resolution transit observations of HD189733b and HD209458b, we were able to detect potassium on HD189733b (Manuscript 1), which was the first high-resolution detection of potassium on an exoplanet. The absence of potassium on HD209458b could be reasoned by depletion processes, such as condensation or photo-ionization or high-altitude clouds. In a further study (Manuscript II), we resolved the potassium line and compared this to a previously detected sodium absorption on this planet. The comparison showed, that the potassium lines are either tracing different altitudes and temperatures compared to the sodium lines, or are depleted so that the planetary Na/K- ratio is way larger than the stellar one. A comparison of the alkali lines with synthetic line profiles showed that the sodium lines were much broader than the potassium lines, probably being induced by winds. To investigate this, the effect of zonal streaming winds on the sodium lines on Jupiter-type planets is investigated in a further study (Manuscript III), showing that such winds can significantly broaden the Na- lines and that high-resolution observations can trace such winds with different properties. Furthermore, investigating the Na-line observations for different exoplanets, I showed that the Na-line broadening follows a trend with cooler planets showing stronger line broadening and so hinting on stronger winds, matching well into theoretical predictions. Each presented manuscript depends on the re- sults published within the previous manuscript, yielding a unitary study of the exoplanet HD189733b. The investigation of the potassium absorption required to account for different effects: The telluric lines removal and the effect of center-to-limb variation (see Manuscript I), the residual Rossiter-Mc-Laughlin effect (see Manuscript II) and the broadening of spectral lines on a translucent atmospheric ring by zonal jet streams (see Manuscript III). This thesis shows that high-resolution transmission spectroscopy is a powerful tool to probe sharp alkali line absorption on giant exoplanet atmospheres and to investigate on the properties and dynamics of hot Jupiter type atmospheres.}, language = {en} } @phdthesis{Bounama2007, author = {Bounama, Christine}, title = {Thermische Evolution und Habitabilit{\"a}t erd{\"a}hnlicher Exoplaneten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16486}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In der vorliegenden Arbeit werden Methoden der Erdsystemanalyse auf die Untersuchung der Habitabilit{\"a}t terrestrischer Exoplaneten angewandt. Mit Hilfe eines parametrisierten Konvektionsmodells f{\"u}r die Erde wird die thermische Evolution von terrestrischen Planeten berechnet. Bei zunehmender Leuchtkraft des Zentralsterns wird {\"u}ber den globalen Karbonat-Silikat-Kreislauf das planetare Klima stabilisiert. F{\"u}r eine photosynthetisch-aktive Biosph{\"a}re, die in einem bestimmten Temperaturbereich bei hinreichender CO2-Konzentration existieren kann, wird eine {\"U}berlebenspanne abgesch{\"a}tzt. Der Abstandsbereich um einen Stern, in dem eine solche Biosph{\"a}re produktiv ist, wird als photosynthetisch-aktive habitable Zone (pHZ) definiert und berechnet. Der Zeitpunkt, zu dem die pHZ in einem extrasolaren Planetensystem endg{\"u}ltig verschwindet, ist die maximale Lebenspanne der Biosph{\"a}re. F{\"u}r Supererden, massereiche terrestrische Planeten, ist sie umso l{\"a}nger, je massereicher der Planet ist und umso k{\"u}rzer, je mehr er mit Kontinenten bedeckt ist. F{\"u}r Supererden, die keine ausgepr{\"a}gten Wasser- oder Landwelten sind, skaliert die maximale Lebenspanne mit der Planetenmasse mit einem Exponenten von 0,14. Um K- und M-Sterne ist die {\"U}berlebensspanne einer Biosph{\"a}re auf einem Planeten immer durch die maximale Lebensspanne bestimmt und nicht durch das Ende der Hauptreihenentwicklung des Zentralsterns limitiert. Das pHZ-Konzept wird auf das extrasolare Planetensystem Gliese 581 angewandt. Danach k{\"o}nnte die 8-Erdmassen-Supererde Gliese 581d habitabel sein. Basierend auf dem vorgestellten pHZ-Konzept wird erstmals die von Ward und Brownlee 1999 aufgestellte Rare-Earth-Hypothese f{\"u}r die Milchstraße quantifiziert. Diese Hypothese besagt, dass komplexes Leben im Universum vermutlich sehr selten ist, wohingegen primitives Leben weit verbreitet sein k{\"o}nnte. Unterschiedliche Temperatur- und CO2-Toleranzen sowie ein unterschiedlicher Einfluss auf die Verwitterung f{\"u}r komplexe und primitive Lebensformen f{\"u}hrt zu unterschiedlichen Grenzen der pHZ und zu einer unterschiedlichen Absch{\"a}tzung f{\"u}r die Anzahl der Planeten, die mit den entsprechenden Lebensformen besiedelt sein k{\"o}nnten. Dabei ergibt sich, dass komplex besiedelte Planeten heute etwa 100-mal seltener sein m{\"u}ssten als primitiv besiedelte.}, language = {de} } @phdthesis{Ilin2022, author = {Ilin, Ekaterina}, title = {High lights: stellar flares as probes of magnetism in stars and star-planet systems}, doi = {10.25932/publishup-56356}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563565}, school = {Universit{\"a}t Potsdam}, pages = {x, 168}, year = {2022}, abstract = {Flares are magnetically driven explosions that occur in the atmospheres of all main sequence stars that possess an outer convection zone. Flaring activity is rooted in the magnetic dynamo that operates deep in the stellar interior, propagates through all layers of the atmosphere from the corona to the photosphere, and emits electromagnetic radiation from radio bands to X-ray. Eventually, this radiation, and associated eruptions of energetic particles, are ejected out into interplanetary space, where they impact planetary atmospheres, and dominate the space weather environments of young star-planet systems. Thanks to the Kepler and the Transit Exoplanet Survey Satellite (TESS) missions, flare observations have become accessible for millions of stars and star-planet systems. The goal of this thesis is to use these flares as multifaceted messengers to understand stellar magnetism across the main sequence, investigate planetary habitability, and explore how close-in planets can affect the host star. Using space based observations obtained by the Kepler/K2 mission, I found that flaring activity declines with stellar age, but this decline crucially depends on stellar mass and rotation. I calibrated the age of the stars in my sample using their membership in open clusters from zero age main sequence to solar age. This allowed me to reveal the rapid transition from an active, saturated flaring state to a more quiescent, inactive flaring behavior in early M dwarfs at about 600-800 Myr. This result is an important observational constraint on stellar activity evolution that I was able to de-bias using open clusters as an activity-independent age indicator. The TESS mission quickly superseded Kepler and K2 as the main source of flares in low mass M dwarfs. Using TESS 2-minute cadence light curves, I developed a new technique for flare localization and discovered, against the commonly held belief, that flares do not occur uniformly across their stellar surface: In fast rotating fully convective stars, giant flares are preferably located at high latitudes. This bears implications for both our understanding of magnetic field emergence in these stars, and the impact on the exoplanet atmospheres: A planet that orbits in the equatorial plane of its host may be spared from the destructive effects of these poleward emitting flares. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b is one of the most promising targets for a first observation of flaring star-planet interactions. In these interactions, the planet influences the star, as opposed to space weather, where the planet is always on the receiving side. The effect reflects the properties of the magnetosphere shared by planet and star, as well as the so far inaccessible magnetic properties of planets. In the about 50 days of TESS monitoring data of AU Mic, I searched for statistically robust signs of flaring interactions with AU Mic b as flares that occur in surplus of the star's intrinsic activity. I found the strongest yet still marginal signal in recurring excess flaring in phase with the orbital period of AU Mic b. If it reflects true signal, I estimate that extending the observing time by a factor of 2-3 will yield a statistically significant detection. Well within the reach of future TESS observations, this additional data may bring us closer to robustly detecting this effect than we have ever been. This thesis demonstrates the immense scientific value of space based, long baseline flare monitoring, and the versatility of flares as a carrier of information about the magnetism of star-planet systems. Many discoveries still lay in wait in the vast archives that Kepler and TESS have produced over the years. Flares are intense spotlights into the magnetic structures in star-planet systems that are otherwise far below our resolution limits. The ongoing TESS mission, and soon PLATO, will further open the door to in-depth understanding of small and dynamic scale magnetic fields on low mass stars, and the space weather environment they effect.}, language = {en} } @phdthesis{Foster2022, author = {Foster, Mary Grace}, title = {X-Ray studies of exoplanet systems}, publisher = {xiii, 92}, doi = {10.25932/publishup-56215}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562152}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2022}, abstract = {X-rays are integral to furthering our knowledge of exoplanetary systems. In this work we discuss the use of X-ray observations to understand star-planet interac- tions, mass-loss rates of an exoplanet's atmosphere and the study of an exoplanet's atmospheric components using future X-ray spectroscopy. The low-mass star GJ 1151 was reported to display variable low-frequency radio emission, which is an indication of coronal star-planet interactions with an unseen exoplanet. In chapter 5 we report the first X-ray detection of GJ 1151's corona based on XMM-Newton data. Averaged over the observation, we detect the star with a low coronal temperature of 1.6 MK and an X-ray luminosity of LX = 5.5 × 1026 erg/s. This is compatible with the coronal assumptions for a sub-Alfv{\´e}nic star- planet interaction origin of the observed radio signals from this star. In chapter 6, we aim to characterise the high-energy environment of known ex- oplanets and estimate their mass-loss rates. This work is based on the soft X-ray instrument on board the Spectrum Roentgen Gamma (SRG) mission, eROSITA, along with archival data from ROSAT, XMM-Newton, and Chandra. We use these four X-ray source catalogues to derive X-ray luminosities of exoplanet host stars in the 0.2-2 keV energy band. A catalogue of the mass-loss rates of 287 exoplan- ets is presented, with 96 of these planets characterised for the first time using new eROSITA detections. Of these first time detections, 14 are of transiting exoplanets that undergo irradiation from their host stars that is of a level known to cause ob- servable evaporation signals in other systems, making them suitable for follow-up observations. In the next generation of space observatories, X-ray transmission spectroscopy of an exoplanet's atmosphere will be possible, allowing for a detailed look into the atmospheric composition of these planets. In chapter 7, we model sample spectra using a toy model of an exoplanetary atmosphere to predict what exoplanet transit observations with future X-ray missions such as Athena will look like. We then estimate the observable X-ray transmission spectrum for a typical Hot Jupiter-type exoplanet, giving us insights into the advances in X-ray observations of exoplanets in the decades to come.}, language = {en} } @phdthesis{Alexoudi2023, author = {Alexoudi, Xanthippi}, title = {Clarifying the discrepant results in the characterization of exoplanetary atmospheres}, doi = {10.25932/publishup-60565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605659}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 125}, year = {2023}, abstract = {Planets outside our solar system, so-called "exoplanets", can be detected with different methods, and currently more than 5000 exoplanets have been confirmed, according to NASA Exoplanet Archive. One major highlight of the studies on exoplanets in the past twenty years is the characterization of their atmospheres usingtransmission spectroscopy as the exoplanet transits. However, this characterization is a challenging process and sometimes there are reported discrepancies in the literature regarding the atmosphere of the same exoplanet. One potential reason for the observed atmospheric inconsistencies is called impact parameter degeneracy, and it is highly driven by the limb darkening effect of the host star. A brief introductionto those topics in presented in chapter 1, while the motivation and objectives of thiswork are described in chapter 2.The first goal is to clarify the origin of the transmission spectrum, which is anindicator of an exoplanet's atmosphere; whether it is real or influenced by the impactparameter degeneracy. A second goal is to determine whether photometry from space using the Transiting Exoplanet Survey Satellite (TESS), could improve on the major parameters, which are responsible for the aforementioned degeneracy, of known exoplanetary systems. Three individual projects were conducted in order toaddress those goals. The three manuscripts are presented, in short, in the manuscriptoverview in chapter 3.More specifically, in chapter 4, the first manuscript is presented, which is an ex-tended investigation on the impact parameter degeneracy and its application onsynthetic transmission spectra. Evidently, the limb darkening of the host star isan important driver for this effect. It keeps the degeneracy persisting through different groups of exoplanets, based on the uncertainty of their impact parameter and on the type of their host star. The second goal, was addressed in the second and third manuscripts (chapter 5 and chapter 6 respectively). Using observationsfrom the TESS mission, two samples of exoplanets were studied; 10 transiting inflated hot-Jupiters and 43 transiting grazing systems. Potentially, the refinement or confirmation of their major system parameters' measurements can assist in solving current or future discrepancies regarding their atmospheric characterization.In chapter 7 the conclusions of this work are discussed, while in chapter 8 itis proposed how TESS's measurements can be able to discern between erroneousinterpretations of transmission spectra, especially on systems where the impact parameter degeneracy is likely not applicable.}, language = {en} } @phdthesis{Ketzer2024, author = {Ketzer, Laura}, title = {The impact of stellar activity evolution on atmospheric mass loss of young exoplanets}, doi = {10.25932/publishup-62681}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626819}, school = {Universit{\"a}t Potsdam}, pages = {x, 208}, year = {2024}, abstract = {The increasing number of known exoplanets raises questions about their demographics and the mechanisms that shape planets into how we observe them today. Young planets in close-in orbits are exposed to harsh environments due to the host star being magnetically highly active, which results in high X-ray and extreme UV fluxes impinging on the planet. Prolonged exposure to this intense photoionizing radiation can cause planetary atmospheres to heat up, expand and escape into space via a hydrodynamic escape process known as photoevaporation. For super-Earth and sub-Neptune-type planets, this can even lead to the complete erosion of their primordial gaseous atmospheres. A factor of interest for this particular mass-loss process is the activity evolution of the host star. Stellar rotation, which drives the dynamo and with it the magnetic activity of a star, changes significantly over the stellar lifetime. This strongly affects the amount of high-energy radiation received by a planet as stars age. At a young age, planets still host warm and extended envelopes, making them particularly susceptible to atmospheric evaporation. Especially in the first gigayear, when X-ray and UV levels can be 100 - 10,000 times higher than for the present-day sun, the characteristics of the host star and the detailed evolution of its high-energy emission are of importance. In this thesis, I study the impact of stellar activity evolution on the high-energy-induced atmospheric mass loss of young exoplanets. The PLATYPOS code was developed as part of this thesis to calculate photoevaporative mass-loss rates over time. The code, which couples parameterized planetary mass-radius relations with an analytical hydrodynamic escape model, was used, together with Chandra and eROSITA X-ray observations, to investigate the future mass loss of the two young multiplanet systems V1298 Tau and K2-198. Further, in a numerical ensemble study, the effect of a realistic spread of activity tracks on the small-planet radius gap was investigated for the first time. The works in this thesis show that for individual systems, in particular if planetary masses are unconstrained, the difference between a young host star following a low-activity track vs. a high-activity one can have major implications: the exact shape of the activity evolution can determine whether a planet can hold on to some of its atmosphere, or completely loses its envelope, leaving only the bare rocky core behind. For an ensemble of simulated planets, an observationally-motivated distribution of activity tracks does not substantially change the final radius distribution at ages of several gigayears. My simulations indicate that the overall shape and slope of the resulting small-planet radius gap is not significantly affected by the spread in stellar activity tracks. However, it can account for a certain scattering or fuzziness observed in and around the radius gap of the observed exoplanet population.}, language = {en} }