@misc{BetaBodenschatz2011, author = {Beta, Carsten and Bodenschatz, Eberhard}, title = {Microfluidic tools for quantitative studies of eukaryotic chemotaxis}, series = {European journal of cell biology}, volume = {90}, journal = {European journal of cell biology}, number = {10}, publisher = {Elsevier}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.ejcb.2011.05.006}, pages = {811 -- 816}, year = {2011}, abstract = {Over the past decade, microfluidic techniques have been established as a versatile platform to perform live cell experiments under well-controlled conditions. To investigate the directional responses of cells, stable concentration profiles of chemotactic factors can be generated in microfluidic gradient mixers that provide a high degree of spatial control. However, the times for built-up and switching of gradient profiles are in general too slow to resolve the intracellular protein translocation events of directional sensing of eukaryotes. Here, we review an example of a conventional microfluidic gradient mixer as well as the novel flow photolysis technique that achieves an increased temporal resolution by combining the photo-activation of caged compounds with the advantages of microfluidic chambers.}, language = {en} }