@phdthesis{Schmeja2006, author = {Schmeja, Stefan}, title = {Properties of turbulent star-forming clusters : models versus observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7364}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Stars are born in turbulent molecular clouds that fragment and collapse under the influence of their own gravity, forming a cluster of hundred or more stars. The star formation process is controlled by the interplay between supersonic turbulence and gravity. In this work, the properties of stellar clusters created by numerical simulations of gravoturbulent fragmentation are compared to those from observations. This includes the analysis of properties of individual protostars as well as statistical properties of the entire cluster. It is demonstrated that protostellar mass accretion is a highly dynamical and time-variant process. The peak accretion rate is reached shortly after the formation of the protostellar core. It is about one order of magnitude higher than the constant accretion rate predicted by the collapse of a classical singular isothermal sphere, in agreement with the observations. For a more reasonable comparison, the model accretion rates are converted to the observables bolometric temperature, bolometric luminosity, and envelope mass. The accretion rates from the simulations are used as input for an evolutionary scheme. The resulting distribution in the Tbol-Lbol-Menv parameter space is then compared to observational data by means of a 3D Kolmogorov-Smirnov test. The highest probability found that the distributions of model tracks and observational data points are drawn from the same population is 70\%. The ratios of objects belonging to different evolutionary classes in observed star-forming clusters are compared to the temporal evolution of the gravoturbulent models in order to estimate the evolutionary stage of a cluster. While it is difficult to estimate absolute ages, the realtive numbers of young stars reveal the evolutionary status of a cluster with respect to other clusters. The sequence shows Serpens as the youngest and IC 348 as the most evolved of the investigated clusters. Finally the structures of young star clusters are investigated by applying different statistical methods like the normalised mean correlation length and the minimum spanning tree technique and by a newly defined measure for the cluster elongation. The clustering parameters of the model clusters correspond in many cases well to those from observed ones. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.}, subject = {Sternentstehung}, language = {en} } @phdthesis{Zhang2021, author = {Zhang, Heshou}, title = {Magnetic fields in the universe}, school = {Universit{\"a}t Potsdam}, pages = {vi, 107}, year = {2021}, abstract = {The galactic interstellar medium is magnetized and turbulent. The magnetic field and turbulence play important roles in many astrophysical mechanisms, including cosmic ray transport, star formation, etc. Therefore, measurements of magnetic field and turbulence information are crucial for the proper interpretation of astronomical observations. Nonetheless, the magnetic field observation is quite challenging, especially, there is not universal magnetic tracer for diffuse medium. Moreover, the modelling of turbulence can be oversimplified due to the lack of observational tools to diagnose the plasma properties of the turbulence in the galactic interstellar medium. The studies presented in this thesis have addressed these challenges by bridging the theoretical studies of magnetic field and turbulence with numerical simulations and observations. The following research are presented in this thesis. The first observational evidence of the novel magnetic tracer, ground state alignment (GSA), is discovered, revealing the three-dimensional magnetic field as well as 2 orders of magnitude higher precision comparing to previous observational study in the stellar atmosphere of the post-AGB 89 Herculis. Moreover, the application of GSA in the sub-millimeter fine-structure lines is comprehensively studied for different elements and with magnetohydrodynamic simulations. Furthermore, the influence of GSA effect on the spectroscopy is analyzed and it is found that measurable variation will be produced on the spectral line intensity and the line ratio without accounting for the optical pumping process or magnetic field. Additionally, a novel method to measure plasma modes in the interstellar medium, Signatures from Polarization Analysis (SPA), is proposed and applied to real observations. Magneto-sonic modes are discovered in different types of interstellar medium. An explanation is provided for the long-standing mystery, the origin of γ-ray enhanced emission "Cygnus Cocoon", based on the comparison between the outcome of SPA and multi-waveband observational data. These novel methods have strong potentials for broader observational applications and will play crucial roles in future multi-wavelength astronomy.}, language = {en} }