@misc{NguyenWangRychkovetal.2019, author = {Nguyen, Quyet Doan and Wang, Jingwen and Rychkov, Dmitry and Gerhard, Reimund}, title = {Depth Profile and Transport of Positive and Negative Charge in Surface (2-D) and Bulk (3-D) Nanocomposite Films}, series = {2nd International Conference on Electrical Materials and Power Equipment (ICEMPE 2019)}, journal = {2nd International Conference on Electrical Materials and Power Equipment (ICEMPE 2019)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-8434-4}, doi = {10.1109/ICEMPE.2019.8727256}, pages = {298 -- 300}, year = {2019}, abstract = {In the present study, the charge distribution and the charge transport across the thickness of 2- and 3-dimensional polymer nanodielectrics was investigated. Chemically surface-treated polypropylene (PP) films and low-density polyethylene nanocomposite films with 3 wt \% of magnesium oxide (LDPE/MgO) served as examples of 2-D and 3-D nanodielectrics, respectively. Surface charges were deposited onto the non-metallized surfaces of the one-side metallized polymer films and found to broaden and to thus enter the bulk of the films upon thermal stimulation at suitable elevated temperatures. The resulting space-charge profiles in the thickness direction were probed by means of Piezoelectrically-generated Pressure Steps (PPSs). It was observed that the chemical surface treatment of PP which led to the formation of nano-structures or the use of bulk nanoparticles from LDPE/MgO nanocomposites enhance charge trapping on or in the respective polymer films and also reduce charge transport inside the respective samples.}, language = {en} }