@article{LiemohnMcColloughJordanovaetal.2018, author = {Liemohn, Michael W. and McCollough, James P. and Jordanova, Vania K. and Ngwira, Chigomezyo M. and Morley, Steven K. and Cid, Consuelo and Tobiska, W. Kent and Wintoft, Peter and Ganushkina, Natalia Yu and Welling, Daniel T. and Bingham, Suzy and Balikhin, Michael A. and Opgenoorth, Hermann J. and Engel, Miles A. and Weigel, Robert S. and Singer, Howard J. and Buresova, Dalia and Bruinsma, Sean and Zhelavskaya, Irina S. and Shprits, Yuri Y. and Vasile, Ruggero}, title = {Model Evaluation Guidelines for Geomagnetic Index Predictions}, series = {Space Weather: The International Journal of Research and Applications}, volume = {16}, journal = {Space Weather: The International Journal of Research and Applications}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2018SW002067}, pages = {2079 -- 2102}, year = {2018}, abstract = {Geomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near-Earth space into a single parameter. Most of the best-known indices are calculated from ground-based magnetometer data sets, such as Dst, SYM-H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root-mean-square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices. Plain Language Summary One aspect of space weather is a magnetic signature across the surface of the Earth. The creation of this signal involves nonlinear interactions of electromagnetic forces on charged particles and can therefore be difficult to predict. The perturbations that space storms and other activity causes in some observation sets, however, are fairly regular in their pattern. Some of these measurements have been compiled together into a single value, a geomagnetic index. Several such indices exist, providing a global estimate of the activity in different parts of geospace. Models have been developed to predict the time series of these indices, and various statistical methods are used to assess their performance at reproducing the original index. Existing studies of geomagnetic indices, however, use different approaches to quantify the performance of the model. This document defines a standardized set of statistical analyses as a baseline set of comparison tools that are recommended to assess geomagnetic index prediction models. It also discusses best practices, limitations, uncertainties, and caveats to consider when conducting a model assessment.}, language = {en} } @article{SaikinJordanovaZhangetal.2018, author = {Saikin, Anthony A. and Jordanova, Vania K. and Zhang, J. C. and Smith, C. W. and Spence, H. E. and Larsen, B. A. and Reeves, G. D. and Torbert, R. B. and Kletzing, C. A. and Zhelayskaya, I. S. and Shprits, Yuri Y.}, title = {Comparing simulated and observed EMIC wave amplitudes using in situ Van}, series = {Journal of Atmospheric and Solar-Terrestrial Physics}, volume = {177}, journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-6826}, doi = {10.1016/j.jastp.2018.01.024}, pages = {190 -- 201}, year = {2018}, abstract = {We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes' (1.1-5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave events with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H+-band and 129 He+-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) Ahp, ∼0.81 to 1.00 (∼0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of Ahp are found to decrease in the presence of EMIC wave activity. Ahp amplification factors are determined and vary with respect to EMIC wave-band and MLT. He+-band events generally require double (quadruple) the measured Ahp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.}, language = {en} } @article{SchmaelzlinMoralejoGersondeetal.2018, author = {Schm{\"a}lzlin, Elmar Gerd and Moralejo, Benito and Gersonde, Ingo and Schleusener, Johannes and Darvin, Maxim E. and Thiede, Gisela and Roth, Martin M.}, title = {Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination}, series = {Journal of biomedical optics}, volume = {23}, journal = {Journal of biomedical optics}, number = {10}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.23.10.105001}, pages = {11}, year = {2018}, abstract = {Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{MannRahmstorfKornhuberetal.2018, author = {Mann, Michael E. and Rahmstorf, Stefan and Kornhuber, Kai and Steinman, Byron A. and Miller, Sonya K. and Petri, Stefan and Coumou, Dim}, title = {Projected changes in persistent extreme summer weather events}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {10}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aat3272}, pages = {9}, year = {2018}, abstract = {Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50\% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events.}, language = {en} } @article{RichterFoxWakkeretal.2018, author = {Richter, Philipp and Fox, Andrew J. and Wakker, Bart P. and Howk, J. Christopher and Lehner, Nicolas and Barger, Kathleen A. and Lockman, Felix J.}, title = {New constraints on the nature and origin of the leading arm of the magellanic stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {865}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aadd0f}, pages = {16}, year = {2018}, abstract = {We present a new precision measurement of gas-phase abundances of S, O, N, Si, Fe, P, Al, Ca as well as molecular hydrogen (H-2) in the Leading Arm (region II, LA II) of the Magellanic Stream (MS) toward the Seyfert galaxy NGC 3783. The results are based on high-quality archival ultraviolet/optical/radio data from various different instruments (HST/STIS, FUSE, AAT, GBT, GB140 ft, ATCA). Our study updates previous results from lower-resolution data and provides for the first time a self-consistent component model of the complex multiphase absorber, delivering important constraints on the nature and origin of LA II. We derive a uniform, moderate a abundance in the two main absorber groups at +245 and +190 km s(-1) of alpha/H = 0.30 +/- 0.05 solar, a low nitrogen abundance of N/H = 0.05 +/- 0.01 solar, and a high dust content with substantial dust depletion values for Si, Fe, Al, and Ca. These a, N, and dust abundances in LA II are similar to those observed in the Small Magellanic Cloud (SMC). From the analysis of the H2 absorption, we determine a high thermal pressure of P/k approximate to 1680 K cm(-3) in LA II, in line with the idea that LA II is located in the inner Milky Way halo at a z-height of < 20 kpc, where it hydrodynamically interacts with the ambient hot coronal gas. Our study supports a scenario in which LA II stems from the breakup of a metal- and dust-enriched progenitor cloud that was recently (200-500 Myr ago) stripped from the SMC.}, language = {en} } @article{vonReppertWilligPudelletal.2018, author = {von Reppert, Alexander and Willig, Lisa and Pudell, Jan-Etienne and Roessle, M. and Leitenberger, Wolfram and Herzog, Marc and Ganss, F. and Hellwig, O. and Bargheer, Matias}, title = {Ultrafast laser generated strain in granular and continuous FePt thin films}, series = {Applied physics letters}, volume = {113}, journal = {Applied physics letters}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5050234}, pages = {5}, year = {2018}, abstract = {We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13\% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s).}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Petrashyk, A. and Pohl, M. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Staszak, D. and Sushch, I. and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {Measurement of cosmic-ray electrons at TeV energies by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.062004}, pages = {7}, year = {2018}, abstract = {Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy, and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance, there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, is primarily utilized for gamma-ray astronomy but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 +/- 40(stat) +/- 140(syst) GeV.}, language = {en} } @article{GonzalezManriqueKuckeinColladosetal.2018, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Collados, M. and Denker, Carsten and Solanki, S. K. and Gomory, P. and Verma, Meetu and Balthasar, H. and Lagg, A. and Diercke, Andrea}, title = {Temporal evolution of arch filaments as seen in He I 10 830 angstrom}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832684}, pages = {11}, year = {2018}, abstract = {Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time.}, language = {en} } @article{BrueggerGobetSigletal.2018, author = {Br{\"u}gger, Sandra Olivia and Gobet, Erika and Sigl, Michael and Osmont, Dimitri and Papina, Tatyana and Rudaya, Natalia and Schwikowski-Gigar, Margit and Tinner, Willy}, title = {Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities}, series = {Global and planetary change}, volume = {169}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2018.07.010}, pages = {188 -- 201}, year = {2018}, abstract = {Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability.}, language = {en} } @article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} }