@article{WesselSchwarzSaparinetal.2002, author = {Wessel, Niels and Schwarz, Udo and Saparin, Peter and Kurths, J{\"u}rgen}, title = {Symbolic dynamics for medical data analysis}, isbn = {3-936142-09-2}, year = {2002}, abstract = {Observational data of natural systems, as measured in medical measurements are typically quite different from those obtained in laboratories. Due to the peculiarities of these data, wellknown characteristics, such as power spectra or fractal dimension, often do not provide a suitable description. To study such data, we present here some measures of complexity, which are basing on symbolic dynamics. Firstly, a motivation for using symbolic dynamics and measures of complexity in data analysis based on the logistic map is given and next, two applications to medical data are shown. We demonstrate that symbolic dynamics is a useful tool for the risk assessment of patients after myocardial infarction as well as for the evaluation of th e architecture of human cancellous bone.}, language = {en} } @unpublished{Seehafer1995, author = {Seehafer, Norbert}, title = {Nature of the α effect in magnetohydrodynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13919}, year = {1995}, abstract = {It is shown that the ff effect of mean-field magnetohydrodynamics, which consists in the generation of a mean electromotive force along the mean magnetic field by turbulently fluctuating parts of velocity and magnetic field, is equivalent to the simultaneous generation of both turbulent and mean-field magnetic helicities, the generation rates being equal in magnitude and opposite in sign. In the particular case of statistically stationary and homogeneous fluctuations this implies that the ff effect can increase the energy in the mean magnetic field only under the condition that also magnetic helicity is accumulated there.}, language = {en} }