@phdthesis{Bounama2007, author = {Bounama, Christine}, title = {Thermische Evolution und Habitabilit{\"a}t erd{\"a}hnlicher Exoplaneten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16486}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In der vorliegenden Arbeit werden Methoden der Erdsystemanalyse auf die Untersuchung der Habitabilit{\"a}t terrestrischer Exoplaneten angewandt. Mit Hilfe eines parametrisierten Konvektionsmodells f{\"u}r die Erde wird die thermische Evolution von terrestrischen Planeten berechnet. Bei zunehmender Leuchtkraft des Zentralsterns wird {\"u}ber den globalen Karbonat-Silikat-Kreislauf das planetare Klima stabilisiert. F{\"u}r eine photosynthetisch-aktive Biosph{\"a}re, die in einem bestimmten Temperaturbereich bei hinreichender CO2-Konzentration existieren kann, wird eine {\"U}berlebenspanne abgesch{\"a}tzt. Der Abstandsbereich um einen Stern, in dem eine solche Biosph{\"a}re produktiv ist, wird als photosynthetisch-aktive habitable Zone (pHZ) definiert und berechnet. Der Zeitpunkt, zu dem die pHZ in einem extrasolaren Planetensystem endg{\"u}ltig verschwindet, ist die maximale Lebenspanne der Biosph{\"a}re. F{\"u}r Supererden, massereiche terrestrische Planeten, ist sie umso l{\"a}nger, je massereicher der Planet ist und umso k{\"u}rzer, je mehr er mit Kontinenten bedeckt ist. F{\"u}r Supererden, die keine ausgepr{\"a}gten Wasser- oder Landwelten sind, skaliert die maximale Lebenspanne mit der Planetenmasse mit einem Exponenten von 0,14. Um K- und M-Sterne ist die {\"U}berlebensspanne einer Biosph{\"a}re auf einem Planeten immer durch die maximale Lebensspanne bestimmt und nicht durch das Ende der Hauptreihenentwicklung des Zentralsterns limitiert. Das pHZ-Konzept wird auf das extrasolare Planetensystem Gliese 581 angewandt. Danach k{\"o}nnte die 8-Erdmassen-Supererde Gliese 581d habitabel sein. Basierend auf dem vorgestellten pHZ-Konzept wird erstmals die von Ward und Brownlee 1999 aufgestellte Rare-Earth-Hypothese f{\"u}r die Milchstraße quantifiziert. Diese Hypothese besagt, dass komplexes Leben im Universum vermutlich sehr selten ist, wohingegen primitives Leben weit verbreitet sein k{\"o}nnte. Unterschiedliche Temperatur- und CO2-Toleranzen sowie ein unterschiedlicher Einfluss auf die Verwitterung f{\"u}r komplexe und primitive Lebensformen f{\"u}hrt zu unterschiedlichen Grenzen der pHZ und zu einer unterschiedlichen Absch{\"a}tzung f{\"u}r die Anzahl der Planeten, die mit den entsprechenden Lebensformen besiedelt sein k{\"o}nnten. Dabei ergibt sich, dass komplex besiedelte Planeten heute etwa 100-mal seltener sein m{\"u}ssten als primitiv besiedelte.}, language = {de} }