@phdthesis{Takey2013, author = {Takey, Ali Said Ahmed}, title = {The XMM-Newton/SDSS galaxy cluster survey}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71229}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Galaxy clusters are the largest known gravitationally bound objects, their study is important for both an intrinsic understanding of their systems and an investigation of the large scale structure of the universe. The multi- component nature of galaxy clusters offers multiple observable signals across the electromagnetic spectrum. At X-ray wavelengths, galaxy clusters are simply identified as X-ray luminous, spatially extended, and extragalactic sources. X-ray observations offer the most powerful technique for constructing cluster catalogues. The main advantages of the X-ray cluster surveys are their excellent purity and completeness and the X-ray observables are tightly correlated with mass, which is indeed the most fundamental parameter of clusters. In my thesis I have conducted the 2XMMi/SDSS galaxy cluster survey, which is a serendipitous search for galaxy clusters based on the X-ray extended sources in the XMM-Newton Serendipitous Source Catalogue (2XMMi-DR3). The main aims of the survey are to identify new X-ray galaxy clusters, investigate their X-ray scaling relations, identify distant cluster candidates, and study the correlation of the X-ray and optical properties. The survey is constrained to those extended sources that are in the footprint of the Sloan Digital Sky Survey (SDSS) in order to be able to identify the optical counterparts as well as to measure their redshifts that are mandatory to measure their physical properties. The overlap area be- tween the XMM-Newton fields and the SDSS-DR7 imaging, the latest SDSS data release at the starting of the survey, is 210 deg^2. The survey comprises 1180 X-ray cluster candidates with at least 80 background-subtracted photon counts, which passed the quality control process. To measure the optical redshifts of the X-ray cluster candidates, I used three procedures; (i) cross-matching these candidates with the recent and largest optically selected cluster catalogues in the literature, which yielded the photometric redshifts of about a quarter of the X-ray cluster candidates. (ii) I developed a finding algorithm to search for overdensities of galaxies at the positions of the X-ray cluster candidates in the photometric redshift space and to measure their redshifts from the SDSS-DR8 data, which provided the photometric redshifts of 530 groups/clusters. (iii) I developed an algorithm to identify the cluster candidates associated with spectroscopically targeted Luminous Red Galaxies (LRGs) in the SDSS-DR9 and to measure the cluster spectroscopic redshift, which provided 324 groups and clusters with spectroscopic confirmation based on spectroscopic redshift of at least one LRG. In total, the optically confirmed cluster sample comprises 574 groups and clusters with redshifts (0.03 ≤ z ≤ 0.77), which is the largest X-ray selected cluster catalogue to date based on observations from the current X-ray observatories (XMM-Newton, Chandra, Suzaku, and Swift/XRT). Among the cluster sample, about 75 percent are newly X-ray discovered groups/clusters and 40 percent are new systems to the literature. To determine the X-ray properties of the optically confirmed cluster sample, I reduced and analysed their X-ray data in an automated way following the standard pipelines of processing the XMM-Newton data. In this analysis, I extracted the cluster spectra from EPIC(PN, MOS1, MOS2) images within an optimal aperture chosen to maximise the signal-to-noise ratio. The spectral fitting procedure provided the X-ray temperatures kT (0.5 - 7.5 keV) for 345 systems that have good quality X-ray data. For all the optically confirmed cluster sample, I measured the physical properties L500 (0.5 x 10^42 - 1.2 x 10^45 erg s-1 ) and M500 (1.1 x 10^13 - 4.9 x 10^14 M⊙) from an iterative procedure using published scaling relations. The present X-ray detected groups and clusters are in the low and intermediate luminosity regimes apart from few luminous systems, thanks to the XMM-Newton sensitivity and the available XMM-Newton deep fields The optically confirmed cluster sample with measurements of redshift and X-ray properties can be used for various astrophysical applications. As a first application, I investigated the LX - T relation for the first time based on a large cluster sample of 345 systems with X-ray spectroscopic parameters drawn from a single survey. The current sample includes groups and clusters with wide ranges of redshifts, temperatures, and luminosities. The slope of the relation is consistent with the published ones of nearby clusters with higher temperatures and luminosities. The derived relation is still much steeper than that predicted by self-similar evolution. I also investigated the evolution of the slope and the scatter of the LX - T relation with the cluster redshift. After excluding the low luminosity groups, I found no significant changes of the slope and the intrinsic scatter of the relation with redshift when dividing the sample into three redshift bins. When including the low luminosity groups in the low redshift subsample, I found its LX - T relation becomes after than the relation of the intermediate and high redshift subsamples. As a second application of the optically confirmed cluster sample from our ongoing survey, I investigated the correlation between the cluster X-ray and the optical parameters that have been determined in a homogenous way. Firstly, I investigated the correlations between the BCG properties (absolute magnitude and optical luminosity) and the cluster global proper- ties (redshift and mass). Secondly, I computed the richness and the optical luminosity within R500 of a nearby subsample (z ≤ 0.42, with a complete membership detection from the SDSS data) with measured X-ray temperatures from our survey. The relation between the estimated optical luminosity and richness is also presented. Finally, the correlation between the cluster optical properties (richness and luminosity) and the cluster global properties (X-ray luminosity, temperature, mass) are investigated.}, language = {en} }