@phdthesis{Steyrleuthner2014, author = {Steyrleuthner, Robert}, title = {Korrelation von Struktur, optischen Eigenschaften und Ladungstransport in einem konjugierten Naphthalindiimid-Bithiophen Copolymer mit herausragender Elektronenmobilit{\"a}t}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71413}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Organische Halbleiter besitzen neue, bemerkenswerte Materialeigenschaften, die sie f{\"u}r die grundlegende Forschung wie auch aktuelle technologische Entwicklung (bsw. org. Leuchtdioden, org. Solarzellen) interessant werden lassen. Aufgrund der starken konformative Freiheit der konjugierten Polymerketten f{\"u}hrt die Vielzahl der m{\"o}glichen Anordnungen und die schwache intermolekulare Wechselwirkung f{\"u}r gew{\"o}hnlich zu geringer struktureller Ordnung im Festk{\"o}rper. Die Morphologie hat gleichzeitig direkten Einfluss auf die elektronische Struktur der organischen Halbleiter, welches sich meistens in einer deutlichen Reduktion der Ladungstr{\"a}gerbeweglichkeit gegen{\"u}ber den anorganischen Verwandten zeigt. So stellt die Beweglichkeit der Ladungen im Halbleiter einen der limitierenden Faktoren f{\"u}r die Leistungsf{\"a}higkeit bzw. den Wirkungsgrad von funktionellen organischen Bauteilen dar. Im Jahr 2009 wurde ein neues auf Naphthalindiimid und Bithiophen basierendes Dornor/Akzeptor Copolymer vorgestellt [P(NDI2OD‑T2)], welches sich durch seine außergew{\"o}hnlich hohe Ladungstr{\"a}germobilit{\"a}t auszeichnet. In dieser Arbeit wird die Ladungstr{\"a}germobilit{\"a}t in P(NDI2OD‑T2) bestimmt, und der Transport durch eine geringe energetischer Unordnung charakterisiert. Obwohl dieses Material zun{\"a}chst als amorph beschrieben wurde zeigt eine detaillierte Analyse der optischen Eigenschaften von P(NDI2OD‑T2), dass bereits in L{\"o}sung geordnete Vorstufen supramolekularer Strukturen (Aggregate) existieren. Quantenchemische Berechnungen belegen die beobachteten spektralen {\"A}nderungen. Mithilfe der NMR-Spektroskopie kann die Bildung der Aggregate unabh{\"a}ngig von optischer Spektroskopie best{\"a}tigt werden. Die Analytische Ultrazentrifugation an P(NDI2OD‑T2) L{\"o}sungen legt nahe, dass sich die Aggregation innerhalb der einzelnen Ketten unter Reduktion des hydrodynamischen Radius vollzieht. Die Ausbildung supramolekularen Strukturen nimmt auch eine signifikante Rolle bei der Filmbildung ein und verhindert gleichzeitig die Herstellung amorpher P(NDI2OD‑T2) Filme. Durch chemische Modifikation der P(NDI2OD‑T2)-Kette und verschiedener Prozessierungs-Methoden wurde eine {\"A}nderung des Kristallinit{\"a}tsgrades und gleichzeitig der Orientierung der kristallinen Dom{\"a}nen erreicht und mittels R{\"o}ntgenbeugung quantifiziert. In hochaufl{\"o}senden Elektronenmikroskopie-Messungen werden die Netzebenen und deren Einbettung in die semikristallinen Strukturen direkt abgebildet. Aus der Kombination der verschiedenen Methoden erschließt sich ein Gesamtbild der Nah- und Fernordnung in P(NDI2OD‑T2). {\"U}ber die Messung der Elektronenmobilit{\"a}t dieser Schichten wird die Anisotropie des Ladungstransports in den kristallographischen Raumrichtungen von P(NDI2OD‑T2) charakterisiert und die Bedeutung der intramolekularen Wechselwirkung f{\"u}r effizienten Ladungstransport herausgearbeitet. Gleichzeitig wird deutlich, wie die Verwendung von gr{\"o}ßeren und planaren funktionellen Gruppen zu h{\"o}heren Ladungstr{\"a}germobilit{\"a}ten f{\"u}hrt, welche im Vergleich zu klassischen semikristallinen Polymeren weniger sensitiv auf die strukturelle Unordnung im Film sind.}, language = {de} } @phdthesis{Caprioglio2020, author = {Caprioglio, Pietro}, title = {Non-radiative recombination losses in perovskite solar cells}, doi = {10.25932/publishup-47763}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-477630}, school = {Universit{\"a}t Potsdam}, pages = {vi, 242}, year = {2020}, abstract = {In the last decade the photovoltaic research has been preponderantly overturned by the arrival of metal halide perovskites. The introduction of this class of materials in the academic research for renewable energy literally shifted the focus of a large number of research groups and institutions. The attractiveness of halide perovskites lays particularly on their skyrocketing efficiencies and relatively simple and cheap fabrication methods. Specifically, the latter allowed for a quick development of this research in many universities and institutes around the world at the same time. The outcome has been a fast and beneficial increase in knowledge with a consequent terrific improvement of this new technology. On the other side, the enormous amount of research promoted an immense outgrowth of scientific literature, perpetually published. Halide perovskite solar cells are now effectively competing with other established photovoltaic technologies in terms of power conversion efficiencies and production costs. Despite the tremendous improvement, a thorough understanding of the energy losses in these systems is of imperative importance to unlock the full thermodynamic potential of this material. This thesis focuses on the understanding of the non-radiative recombination processes in the neat perovskite and in complete devices. Specifically, photoluminescence quantum yield (PLQY) measurements were applied to multilayer stacks and cells under different illumination conditions to accurately determine the quasi-Fermi levels splitting (QFLS) in the absorber, and compare it with the external open-circuit voltage of the device (V_OC). Combined with drift-diffusion simulations, this approach allowed us to pinpoint the sites of predominant recombination, but also to investigate the dynamics of the underlying processes. As such, the internal and external ideality factors, associated to the QFLS and V_OC respectively, are studied with the aim of understanding the type of recombination processes taking place in the multilayered architecture of the device. Our findings highlight the failure of the equality between QFLS and V_OC in the case of strong interface recombination, as well as the detrimental effect of all commonly used transport layers in terms of V_OC losses. In these regards, we show how, in most perovskite solar cells, different recombination processes can affect the internal QFLS and the external V_OC and that interface recombination dictates the V_OC losses. This line of arguments allowed to rationalize that, in our devices, the external ideality factor is completely dominated by interface recombination, and that this process can alone be responsible for values of the ideality factor between 1 and 2, typically observed in perovskite solar cells. Importantly, our studies demonstrated how strong interface recombination can lower the ideality factor towards values of 1, often misinterpreted as pure radiative second order recombination. As such, a comprehensive understanding of the recombination loss mechanisms currently limiting the device performance was achieved. In order to reach the full thermodynamic potential of the perovskite absorber, the interfaces of both the electron and hole transport layers (ETL/HTL) must be properly addressed and improved. From here, the second part of the research work is devoted on reducing the interfacial non-radiative energy losses by optimizing the structure and energetics of the relevant interface in our solar cell devices, with the aim of bringing their quasi-Fermi level splitting closer to its radiative limit. As such, the interfaces have been carefully addressed and optimized with different methodologies. First, a small amount of Sr is added into the perovskite precursor solution with the effect of effectively reducing surface and interface recombination. In this case, devices with V_OC up to 1.23 V were achieved and the energy losses were minimized to as low as 100 meV from the radiative limit of the material. Through a combination of different methods, we showed that these improvements are related to a strong n-type surface doping, which repels the holes in the perovskite from the surface and the interface with the ETL. Second, a more general device improvement was achieved by depositing a defect-passivating poly(ionic-liquid) layer on top of the perovskite absorber. The resulting devices featured a concomitant improvement of the V_OC and fill factor, up to 1.17 V and 83\% respectively, reaching efficiency as high as 21.4\%. Moreover, the protecting polymer layer helped to enhance the stability of the devices under prolonged maximum power point tracking measurements. Lastly, PLQY measurements are used to investigate the recombination mechanisms in halide-segregated large bandgap perovskite materials. Here, our findings showed how few iodide-rich low-energy domains act as highly efficient radiative recombination centers, capable of generating PLQY values up to 25\%. Coupling these results with a detailed microscopic cathodoluminescence analysis and absorption profiles allowed to demonstrate how the emission from these low energy domains is due to the trapping of the carriers photogenerated in the Br-rich high-energy domains. Thereby, the strong implications of this phenomenon are discussed in relation to the failure of the optical reciprocity between absorption and emission and on the consequent applicability of the Shockley-Queisser theory for studying the energy losses such systems. In conclusion, the identification and quantification of the non-radiative QFLS and V_OC losses provided a base knowledge of the fundamental limitation of perovskite solar cells and served as guidance for future optimization and development of this technology. Furthermore, by providing practical examples of solar cell improvements, we corroborated the correctness of our fundamental understanding and proposed new methodologies to be further explored by new generations of scientists.}, language = {en} }