@phdthesis{Prevot2006, author = {Prevot, Michelle Elizabeth}, title = {Introduction of a thermo-sensitive non-polar species into polyelectrolyte multilayer capsules for drug delivery}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7785}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The layer-by-layer assembly (LBL) of polyelectrolytes has been extensively studied for the preparation of ultrathin films due to the versatility of the build-up process. The control of the permeability of these layers is particularly important as there are potential drug delivery applications. Multilayered polyelectrolyte microcapsules are also of great interest due to their possible use as microcontainers. This work will present two methods that can be used as employable drug delivery systems, both of which can encapsulate an active molecule and tune the release properties of the active species. Poly-(N-isopropyl acrylamide), (PNIPAM) is known to be a thermo-sensitive polymer that has a Lower Critical Solution Temperature (LCST) around 32oC; above this temperature PNIPAM is insoluble in water and collapses. It is also known that with the addition of salt, the LCST decreases. This work shows Differential Scanning Calorimetry (DSC) and Confocal Laser Scanning Microscopy (CLSM) evidence that the LCST of the PNIPAM can be tuned with salt type and concentration. Microcapsules were used to encapsulate this thermo-sensitive polymer, resulting in a reversible and tunable stimuli- responsive system. The encapsulation of the PNIPAM inside of the capsule was proven with Raman spectroscopy, DSC (bulk LCST measurements), AFM (thickness change), SEM (morphology change) and CLSM (in situ LCST measurement inside of the capsules). The exploitation of the capsules as a microcontainer is advantageous not only because of the protection the capsules give to the active molecules, but also because it facilitates easier transport. The second system investigated demonstrates the ability to reduce the permeability of polyelectrolyte multilayer films by the addition of charged wax particles. The incorporation of this hydrophobic coating leads to a reduced water sensitivity particularly after heating, which melts the wax, forming a barrier layer. This conclusion was proven with Neutron Reflectivity by showing the decreased presence of D2O in planar polyelectrolyte films after annealing creating a barrier layer. The permeability of capsules could also be decreased by the addition of a wax layer. This was proved by the increase in recovery time measured by Florescence Recovery After Photobleaching, (FRAP) measurements. In general two advanced methods, potentially suitable for drug delivery systems, have been proposed. In both cases, if biocompatible elements are used to fabricate the capsule wall, these systems provide a stable method of encapsulating active molecules. Stable encapsulation coupled with the ability to tune the wall thickness gives the ability to control the release profile of the molecule of interest.}, subject = {Mikrokapsel}, language = {en} } @phdthesis{Elsner2005, author = {Elsner, Nils}, title = {Nanomechanik und Adh{\"a}sion von Polyelektrolytmultischicht-Hohlkapseln}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5555}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Die vorliegende Arbeit besch{\"a}ftigte sich mit zwei Themengebieten. Es ging zum einen um die mechanischen Eigenschaften von Polyelektrolythohlkapseln und zum anderen um die Adh{\"a}sion von Polyelektrolythohlkapseln. Die mechanischen Eigenschaften wurden mit der AFM „colloidal probe" Technik untersucht. Dabei zeigte sich, dass die Kraftdeformationskurven f{\"u}r kleine Deformationen den nach der Schalentheorie vorhergesagten linearen Verlauf haben. Ebenso wurde die quadratische Abh{\"a}ngigkeit der Federkonstanten von der Dicke best{\"a}tigt. F{\"u}r PAH/PSS findet man einen E-Modul von 0.25 GPa. Zusammen mit der Tatsache, dass die Deformationskurven unabh{\"a}ngig von der Geschwindigkeit sind und praktisch keine Hysterese zeigen, sowie der M{\"o}glichkeit die Kapseln plastisch zu deformieren, kann man schließen, dass das System in einem glasartigen Zustand vorliegt. Erwartungsgem{\"a}ß zeigte der pH einen starken Einfluss auf die PEM. W{\"a}hrend in einem pH-Bereich zwischen 2 und 11.5 keine morphologischen {\"A}nderungen festgestellt werden konnten, vergr{\"o}ßerte sich der Radius bei pH = 12 um bis zu 50 \%. Diese Radien{\"a}nderung war reversibel und ging einher mit einem sichtbaren Weicherwerden der Kapseln. Eine Abnahme des E-Moduls um mindestens drei Gr{\"o}ßenordungen wurde durch Kraftdeformationsmessungen best{\"a}tigt. Die Kraftdeformationskurven zeigen eine starke Hysterese. Das System befindet sich nun nicht mehr in einem glasartigen Zustand, sondern ist viskos bis gummiartig geworden. Messungen an Kapseln, die mit Glutardialdehyd behandelt wurden, zeigten, dass die Behandlung das pH-abh{\"a}ngige Verhalten ver{\"a}ndert. Dies kann darauf zur{\"u}ckgef{\"u}hrt werden, dass das PAH durch den Glutardialdehyd quervernetzt wird. Bei einem hohen Quervernetzungsgrad, zeigen die Kapseln keine {\"A}nderung des mechanischen Verhaltens bei pH = 12. Schwach quervernetzte Kapseln werden immer noch signifikant weicher bei pH = 12, jedoch {\"a}ndert sich der Radius nicht. Außerdem wurden Multilagenkapseln untersucht, deren Stabilit{\"a}t nicht auf elektrostatischen Wechselwirkungen sondern auf Wasserstoffbr{\"u}ckenbindungen beruhte. Diese Kapseln zeigten eine deutlich h{\"o}here Steifigkeit mit E-Modulen bis zu 1 GPa. Es wurde gefunden, dass auch dieses System f{\"u}r kleine Deformationen ein lineares Kraft-Deformationsverhalten zeigt, und dass die Federkonstante quadratisch von der Dicke abh{\"a}ngt. Die Kapseln l{\"o}sen sich praktisch sofort bei pH = 6.5 auf. In der N{\"a}he dieses pHs konnte das Abnehmen der Federkonstanten verfolgt werden. Außerdem wurde das Adh{\"a}sionsverhalten von PAH/PSS Kapseln auf mit PEI-beschichtetem Glas untersucht. Die Adh{\"a}sionsfl{\"a}chen waren zu einem großen Teil rund und ließen sich quantitativ auswerten. Der Adh{\"a}sionsradius nimmt mit dem Kapselradius zu und mit der Dicke ab. Das Verhalten konnte mit zwei Modellen, einem f{\"u}r die große und einem f{\"u}r die kleine Deformation beschrieben werden. Das große Deformationsmodell liefert um eine Gr{\"o}ßenordung niedrigere Adh{\"a}sionsenergien als das kleine Deformationsmodell, welches mit Werten von ‑0.2 mJ/m2 Werte in einem plausiblen Bereich liefert. Es wurde gefunden, dass bei einem Verh{\"a}ltnis von Dicke zu Deformation von etwa eins "buckling" auftritt. Dieser Punkt markierte zugleich den {\"U}bergang von der großen zur kleinen Deformation.}, subject = {Polyelektrolyt}, language = {de} } @phdthesis{Boroudjerdi2005, author = {Boroudjerdi, Hoda}, title = {Charged polymer-macroion complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6282}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This work explores the equilibrium structure and thermodynamic phase behavior of complexes formed by charged polymer chains (polyelectrolytes) and oppositely charged spheres (macroions). Polyelectrolyte-macroion complexes form a common pattern in soft-matter physics, chemistry and biology, and enter in numerous technological applications as well. From a fundamental point of view, such complexes are interesting in that they combine the subtle interplay between electrostatic interactions and elastic as well as entropic effects due to conformational changes of the polymer chain, giving rise to a wide range of structural properties. This forms the central theme of theoretical studies presented in this thesis, which concentrate on a number of different problems involving strongly coupled complexes, i.e. complexes that are characterized by a large adsorption energy and small chain fluctuations. In the first part, a global analysis of the structural phase behavior of a single polyelectrolyte-macroion complex is presented based on a dimensionless representation, yielding results that cover a wide range of realistic system parameters. Emphasize is made on the interplay between the effects due to the polyelectrolytes chain length, salt concentration and the macroion charge as well as the mechanical chain persistence length. The results are summarized into generic phase diagrams characterizing the wrapping-dewrapping behavior of a polyelectrolyte chain on a macroion. A fully wrapped chain state is typically obtained at intermediate salt concentrations and chain lengths, where the amount of polyelectrolyte charge adsorbed on the macroion typically exceeds the bare macroion charge leading thus to a highly overcharged complex. Perhaps the most striking features occur when a single long polyelectrolyte chain is complexed with many oppositely charged spheres. In biology, such complexes form between DNA (which carries the cell's genetic information) and small oppositely charged histone proteins serving as an efficient mechanism for packing a huge amount of DNA into the micron-size cell nucleus in eucaryotic cells. The resultant complex fiber, known as the chromatin fiber, appears with a diameter of 30~nm under physiological conditions. Recent experiments indicate a zig-zag spatial arrangement for individual DNA-histone complexes (nucleosome core particles) along the chromatin fiber. A numerical method is introduced in this thesis based on a simple generic chain-sphere cell model that enables one to investigate the mechanism of fiber formation on a systematic level by incorporating electrostatic and elastic contributions. As will be shown, stable complex fibers exhibit an impressive variety of structures including zig-zag, solenoidal and beads-on-a-string patterns, depending on system parameters such as salt concentration, sphere charge as well as the chain contour length (per sphere). The present results predict fibers of compact zig-zag structure within the physiologically relevant regime with a diameter of about 30~nm, when DNA-histone parameters are adopted. In the next part, a numerical method is developed in order to investigate the role of thermal fluctuations on the structure and thermodynamic phase behavior of polyelectrolyte-macroion complexes. This is based on a saddle-point approximation, which allows to describe the experimentally observed reaction (or complexation) equilibrium in a dilute solution of polyelectrolytes and macroions on a systematic level. This equilibrium is determined by the entropy loss a single polyelectrolyte chain suffers as it binds to an oppositely charged macroion. This latter quantity can be calculated from the spectrum of polyelectrolyte fluctuations around a macroion, which is determined by means of a normal-mode analysis. Thereby, a stability phase diagram is obtained, which exhibits qualitative agreement with experimental findings. At elevated complex concentrations, one needs to account for the inter-complex interactions as well. It will be shown that at small separations, complexes undergo structural changes in such a way that positive patches from one complex match up with negative patches on the other. Furthermore, one of the polyelectrolyte chains may bridge between the two complexes. These mechanisms lead to a strong inter-complex attraction. As a result, the second virial coefficient associated with the inter-complex interaction becomes negative at intermediate salt concentrations in qualitative agreement with recent experiments on solutions of nucleosome core particles.}, subject = {Biopolymere}, language = {en} } @phdthesis{NarayananNair2006, author = {Narayanan Nair, Arun Kumar}, title = {Molecular dynamics simulations of polyelectrolyte brushes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7005}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis studies strong, completely charged polyelectrolyte brushes. Extensive molecular dynamics simulations are performed on different polyelectrolyte brush systems using local compute servers and massively parallel supercomputers. The full Coulomb interaction of charged monomers, counterions, and salt ions is treated explicitly. The polymer chains are anchored by one of their ends to a uncharged planar surface. The chains are treated under good solvent conditions. Monovalent salt ions (1:1 type) are modelled same as counterions. The studies concentrate on three different brush systems at constant temperature and moderate Coulomb interaction strength (Bjerrum length equal to bond length): The first system consists of a single polyelectrolyte brush anchored with varying grafting density to a plane. Results show that chains are extended up to about 2/3 of their contour length. The brush thickness slightly grows with increasing anchoring density. This slight dependence of the brush height on grafting density is in contrast to the well known scaling result for the osmotic brush regime. That is why the result obtained by simulations has stimulated further development of theory as well as new experimental investigations on polyelectrolyte brushes. This observation can be understood on a semi-quantitative level using a simple scaling model that incorporates excluded volume effects in a free-volume formulation where an effective cross section is assigned to the polymer chain from where couterions are excluded. The resulting regime is called nonlinear osmotic brush regime. Recently this regime was also obtained in experiments. The second system studied consists of polyelectrolyte brushes with added salt in the nonlinear osmotic regime. Varying salt is an important parameter to tune the structure and properties of polyelectrolytes. Further motivation is due to a theoretical scaling prediction by Pincus for the salt dependence of brush thickness. In the high salt limit (salt concentration much larger than counterion concentration) the brush height is predicted to decrease with increasing external salt, but with a relatively weak power law showing an exponent -1/3. There is some experimental and theoretical work that confirms this prediction, but there are other results that are in contradiction. In such a situation simulations are performed to validate the theoretical prediction. The simulation result shows that brush thickness decreases with added salt, and indeed is in quite good agreement with the scaling prediction by Pincus. The relation between buffer concentration and the effective ion strength inside the brush at varying salt concentration is of interest both from theoretical as well as experimental point of view. The simulation result shows that mobile ions (counterions as well as salt) distribute nonhomogeneously inside and outside of the brush. To explain the relation between the internal ion concentration with the buffer concentration a Donnan equilibrium approach is employed. Modifying the Donnan approach by taking into account the self-volume of polyelectrolyte chains as indicated above, the simulation result can be explained using the same effective cross section for the polymer chains. The extended Donnan equilibrium relation represents a interesting theoretical prediction that should be checked by experimental data. The third system consist of two interacting polyelectrolyte brushes that are grafted to two parallel surfaces. The interactions between brushes are important, for instance, in stabilization of dispersions against flocculation. In the simulations pressure is evaluated as a function of separation D between the two grafting planes. The pressure behavior shows different regimes for decreasing separation. This behavior is in qualitative agreement with experimental data. At relatively weak compression the pressure behavior obtained in the simulation agrees with a 1/D power law predicted by scaling theory. Beyond that the present study could supply new insight for understanding the interaction between polyelectrolyte brushes.}, subject = {Molekulardynamik}, language = {en} }