@phdthesis{Ghani2012, author = {Ghani, Fatemeh}, title = {Nucleation and growth of unsubstituted metal phthalocyanine films from solution on planar substrates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64699}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Organic solar cells (OSC) are interesting as low cost alternative to conventional solar cells. Unsubstituted Metal-phthalocyanines (Pc) are excellent electron donating molecules for heterojunction OSC. Usually organic solar cells with Pcs are produced by vapor deposition, although solution based deposition (like spin casting) is cheaper and offers more possibilities to control the structure of the film. With solution based deposition several parameters (like temperature, solvent and etc.) affect the self-organized structure formation via nucleation and growth. The reason why vapor deposition is typically used is the poor solubility of the metal-phthalocyanines in most common solvents. Furthermore the process of nucleation and growth of Pc aggregates from solution is not well understood. For preparation of Pc films from solution, it is necessary to find the appropriate solvents, assess the solution deposition techniques, such as dip coating, and spin casting. It is necessary to understand the nucleation and growth process for aggregation/precipitation and to use this knowledge to produce nanostructures appropriate for OSC. This is important because the nanostructure of the films determines their performance. In this thesis, optical absorption and the stability of 8 different unsubstituted metal Pc's were studied quantitatively in 28 different solvents. Among the several solution based deposited thin films produced based on this study, copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is chosen as a model system for an in-depth study. CuPc has sufficient solubility and stability in TFA and upon solution processing forms appropriate structures for OSCs. CuPc molecules aggregate into layers of nanoribbons with a thickness of ~ 1 nm and an adjustable width and length. The morphology and the number of deposited layers in the thin films are controlled by different parameters, like temperature and solution concentration. Material properties of CuPc deposited from TFA are studied in detail via x-ray diffraction, UV-Vis and FT-IR spectroscopy. Atomic force microscopy was used to study the morphology of the dried film. The mechanism of the formation of CuPc nanoribbons from spin casted CuPc/TFA solution in ambient temperature is investigated and explained. The parameters (e.g. solution concentration profile) governing nucleation and growth are calculated based on the spin casting theory of a binary mixture of a nonvolatile solute and evaporative solvent. Based on this and intermolecular interactions between CuPc and substrate a nucleation and growth model is developed explaining the aggregation of CuPc in a supersaturated TFA solution. Finally, a solution processed thin film of CuPc is applied as a donor layer in a functioning bilayer heterojunction OSC and the influence of the structure on OSC performance is studied.}, language = {en} }