@phdthesis{Petsiuk2021, author = {Petsiuk, Andrei}, title = {Investigation of charge carrier transport in metal halide perovskites by THz Spectroscopy}, doi = {10.25932/publishup-51544}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515441}, school = {Universit{\"a}t Potsdam}, pages = {118}, year = {2021}, abstract = {Halide perovskites are a class of novel photovoltaic materials that have recently attracted much attention in the photovoltaics research community due to their highly promising optoelectronic properties, including large absorption coefficients and long carrier lifetimes. The charge carrier mobility of halide perovskites is investigated in this thesis by THz spectroscopy, which is a contact-free technique that yields the intra-grain sum mobility of electrons and holes in a thin film. The polycrystalline halide perovskite thin films, provided from Potsdam University, show moderate mobilities in the range from 21.5 to 33.5 cm2V-1s-1. It is shown in this work that the room temperature mobility is limited by charge carrier scattering at polar optical phonons. The mobility at low temperature is likely to be limited by scattering at charged and neutral impurities at impurity concentration N=1017-1018 cm-3. Furthermore, it is shown that exciton formation may decrease the mobility at low temperatures. Scattering at acoustic phonons can be neglected at both low and room temperatures. The analysis of mobility spectra over a broad range of temperatures for perovskites with various cation compounds shows that cations have a minor impact on charge carrier mobility. The low-dimensional thin films of quasi-2D perovskite with different numbers of [PbI6]4-sheets (n=2-4) alternating with long organic spacer molecules were provided by S. Zhang from Potsdam University. They exhibit mobilities in the range from 3.7 to 8 cm2V-1s-1. A clear decrease of mobility is observed with decrease in number of metal-halide sheets n, which likely arises from charge carrier confinement within metal-halide layers. Modelling the measured THz mobility with the modified Drude-Smith model yields localization length from 0.9 to 3.7 nm, which agrees well on the thicknesses of the metal-halide layers. Additionally, the mobilities are found to be dependent on the orientation of the layers. The charge carrier dynamics is also dependent on the number of metal-halide sheets n. For the thin films with n =3-4 the dynamics is similar to the 3D MHPs. However, the thin film with n = 2 shows clearly different dynamics, where the signs of exciton formation are observed within 390 fs timeframe after photoexcitation. Also, the charge carrier dynamics of CsPbI3 perovskite nanocrystals was investigated, in particular the effect of post treatments on the charge carrier transport.}, language = {en} }