@phdthesis{Szklarski2007, author = {Szklarski, Jacek T.}, title = {Helical magnetorotational instability in MHD Taylor-Couette flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16002}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Magnetorotational instability (MRI) is one of the most important and most common instabilities in astrophysics. Today it is widely accepted that it serves as a major source of turbulent viscosity in accretion disks, the most energy efficient objects in the universe. The importance of the MRI for astrophysics has been realized only in recent fifteen years. However, originally it was discovered much earlier, in 1959, in a very different context. Theoretical flow of a conducting liquid confined between differentially rotating cylinders in the presence of an external magnetic field was analyzed. The central conclusion is that the additional magnetic field parallel to the axis of rotation can destabilize otherwise stable flow. Theory of non-magnetized fluid motion between rotating cylinders has much longer history, though. It has been studied already in 1888 and today such setup is usually referred as a Taylor-Couette flow. To prove experimentally the existence of MRI in a magnetized Taylor-Couette flow is a demanding task and different MHD groups around the world try to achieve it. The main problem lies in the fact that laboratory liquid metals which are used in such experiments are characterized by small magnetic Prandtl number. Consequently rotation rates of the cylinders must be extremely large and vast amount of technical problems emerge. One of the most important difficulties is an influence of plates enclosing the cylinders in any experiment. For fast rotation the plates tend to dominate the whole flow and the MRI can not be observed. In this thesis we discuss a special helical configuration of the applied magnetic field which allows the critical rotation rates to be much smaller. If only the axial magnetic field is present, the cylinders must rotate with angular velocities corresponding to Reynolds numbers of order Re ≈ 10^6. With the helical field this number is dramatically reduced to Re ≈ 10^3. The azimuthal component of the magnetic field can be easily generated by letting an electric current through the axis of rotation, In a Taylor-Couette flow the (primary) instability manifests itself as Taylor vortices. The specific geometry of the helical magnetic field leads to a traveling wave solution and the vortices are drifting in a direction determined by rotation and the magnetic field. In an idealized study for infinitely long cylinders this is not a problem. However, if the cylinders have finite length and are bounded vertically by the plates the situation is different. In this dissertation it is shown, with use of numerical methods, that the traveling wave solution also exists for MHD Taylor-Couette flow at finite aspect ratio H/D, H being height of the cylinders, D width of the gap between them. The nonlinear simulations provide amplitudes of fluid velocity which are helpful in designing an experiment. Although the plates disturb the flow, parameters like the drift velocity indicate that the helical MRI operates in this case. The idea of the helical MRI was implemented in a very recent experiment PROMISE. The results provided, for the first time, an evidence that the (helical) MRI indeed exists. Nevertheless, the influence of the vertical endplates was evident and the experiment can be, in principle, improved. Exemplary methods of reduction of the end-effect are here proposed. Near the vertical boundaries develops an Ekman-Hartmann layer. Study of this layer for the MHD Taylor-Couette system as well as its impact on the global flow properties is presented. It is shown that the plates, especially if they are conducting, can disturb the flow far more then previously thought also for relatively slow rotation rates.}, language = {en} }