@article{GhaniOpitzPingeletal.2015, author = {Ghani, Fatemeh and Opitz, Andreas and Pingel, Patrick and Heimel, Georg and Salzmann, Ingo and Frisch, Johannes and Neher, Dieter and Tsami, Argiri and Scherf, Ullrich and Koch, Norbert}, title = {Charge Transfer in and Conductivity of Molecularly Doped Thiophene-Based Copolymers}, series = {Journal of polymer science : B, Polymer physics}, volume = {53}, journal = {Journal of polymer science : B, Polymer physics}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23631}, pages = {58 -- 63}, year = {2015}, abstract = {The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground-state integer charge transfer and charge-transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge-transfer interactions between the common molecular p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane and a systematic series of thiophene-based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge-transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design.}, language = {en} } @article{PingelArvindKoellnetal.2016, author = {Pingel, Patrick and Arvind, Malavika and K{\"o}lln, Lisa and Steyrleuthner, Robert and Kraffert, Felix and Behrends, Jan and Janietz, Silvia and Neher, Dieter}, title = {p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane}, series = {Advanced electronic materials}, volume = {2}, journal = {Advanced electronic materials}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2199-160X}, doi = {10.1002/aelm.201600204}, pages = {7}, year = {2016}, abstract = {State-of-the-art p-type doping of organic semiconductors is usually achieved by employing strong -electron acceptors, a prominent example being tetrafluorotetracyanoquinodimethane (F(4)TCNQ). Here, doping of the semiconducting model polymer poly(3-hexylthiophene), P3HT, using the strong Lewis acid tris(pentafluorophenyl)borane (BCF) as a dopant, is investigated by admittance, conductivity, and electron paramagnetic resonance measurements. The electrical characteristics of BCF- and F(4)TCNQ-doped P3HT layers are shown to be very similar in terms of the mobile hole density and the doping efficiency. Roughly 18\% of the employed dopants create mobile holes in either F-4 TCNQ- or BCF-doped P3HT, while the majority of doping-induced holes remain strongly Coulomb-bound to the dopant anions. Despite similar hole densities, conductivity and hole mobility are higher in BCF-doped P3HT layers than in F(4)TCNQ-doped samples. This and the good solubility in many organic solvents render BCF very useful for p-type doping of organic semiconductors.}, language = {en} } @article{XuCaoBrenneretal.2015, author = {Xu, Jingsan and Cao, Shaowen and Brenner, Thomas J. K. and Yang, Xiaofei and Yu, Jiaguo and Antonietti, Markus and Shalom, Menny}, title = {Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry}, series = {Advanced functional materials}, volume = {25}, journal = {Advanced functional materials}, number = {39}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201502843}, pages = {6265 -- 6271}, year = {2015}, abstract = {Here, a new method for enhancing the photoelectrochemical properties of carbon nitride thin films by in situ supramolecular-driven preorganization of phenyl-contained monomers in molten sulfur is reported. A detailed analysis of the chemical and photophysical properties suggests that the molten sulfur can texture the growth and induce more effective integration of phenyl groups into the carbon nitride electrodes, resulting in extended light absorption alongside with improved conductivity and better charge transfer. Furthermore, photophysical measurements indicate the formation of sub-bands in the optical bandgap which is beneficial for exciton splitting. Moreover, the new bands can mediate hole transfer to the electrolyte, thus improving the photooxidation activity. The utilization of high temperature solvent as the polymerization medium opens new opportunities for the significant improvement of carbon nitride films toward an efficient photoactive material for various applications.}, language = {en} }