@article{LiBenduhnQiaoetal.2019, author = {Li, Tian-yi and Benduhn, Johannes and Qiao, Zhi and Liu, Yuan and Li, Yue and Shivhare, Rishi and Jaiser, Frank and Wang, Pei and Ma, Jie and Zeika, Olaf and Neher, Dieter and Mannsfeld, Stefan C. B. and Ma, Zaifei and Vandewal, Koen and Leo, Karl}, title = {Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01222}, pages = {2684 -- 2691}, year = {2019}, abstract = {An understanding of the factors limiting the open-circuit voltage (V-oc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5\% is achieved with an external quantum efficiency (EQE) maximum of 68\% at 700 nm.}, language = {en} } @article{KurpiersFerronRolandetal.2018, author = {Kurpiers, Jona and Ferron, Thomas and Roland, Steffen and Jakoby, Marius and Thiede, Tobias and Jaiser, Frank and Albrecht, Steve and Janietz, Silvia and Collins, Brian A. and Howard, Ian A. and Neher, Dieter}, title = {Probing the pathways of free charge generation in organic bulk heterojunction solar cells}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04386-3}, pages = {11}, year = {2018}, abstract = {The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges.}, language = {en} } @article{LiBenduhnLietal.2018, author = {Li, Tian-yi and Benduhn, Johannes and Li, Yue and Jaiser, Frank and Spoltore, Donato and Zeika, Olaf and Ma, Zaifei and Neher, Dieter and Vandewal, Koen and Leo, Karl}, title = {Boron dipyrromethene (BODIPY) with meso-perfluorinated alkyl substituents as near infrared donors in organic solar cells}, series = {Journal of materials chemistry : A, Materials for energy and sustainability}, volume = {6}, journal = {Journal of materials chemistry : A, Materials for energy and sustainability}, number = {38}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/c8ta06261g}, pages = {18583 -- 18591}, year = {2018}, abstract = {Three furan-fused BODIPYs were synthesized with perfluorinated methyl, ethyl and n-propyl groups on the meso-carbon. They were obtained with high yields by reacting the furan-fused 2-carboxylpyrrole in corresponding perfluorinated acid and anhydride. With the increase in perfluorinated alkyl chain length, the molecular packing in the single crystal is influenced, showing increasing stacking distance and decreasing slope angle. All the BODIPYs were characterized as intense absorbers in near infrared region in solid state, peaking at similar to 800 nm with absorption coefficient of over 280 000 cm(-1). Facilitated by high thermal stability, the furan-fused BODIPYs were employed in vacuum-deposited organic solar cells as electron donors. All devices exhibit PCE over 6.0\% with the EQE maximum reaching 70\% at similar to 790 nm. The chemical modification of the BODIPY donors have certain influence on the active layer morphology, and the highest PCE of 6.4\% was obtained with a notably high jsc of 13.6 mA cm(-2). Sensitive EQE and electroluminance studies indicated that the energy losses generated by the formation of a charge transfer state and the radiative recombination at the donor-acceptor interface were comparable in the range of 0.14-0.19 V, while non-radiative recombination energy loss of 0.38 V was the main energy loss route resulting in the moderate V-oc of 0.76 V.}, language = {en} } @article{YangJaiserStilleretal.2006, author = {Yang, Xiao Hui and Jaiser, Frank and Stiller, Burkhard and Neher, Dieter and Galbrecht, Frank and Scherf, Ullrich}, title = {Efficient polymer electrophosphoreseent devices with interfacial layers}, series = {Advanced functional materials}, volume = {16}, journal = {Advanced functional materials}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.200500834}, pages = {2156 -- 2162}, year = {2006}, abstract = {It is shown that several polymers can form insoluble interfacial layers on a poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer after annealing of the double-layer structure. The thickness of the interlayer is dependent on the characteristics of the underlying PEDOT.PSS and the molecular weight of the polymers. It is further shown that the electronic structures of the interlayer polymers have a significant effect on the properties of red-light-emitting polymer-based electrophosphorescent devices. Upon increasing the highest occupied molecular orbital and lowest unoccupied molecular orbital positions, a significant increase in current density and device efficiency is observed. This is attributed to efficient blocking of electrons in combination with direct injection of holes from the interlayer to the phosphorescent dye. Upon proper choice of the interlayer polymer, efficient red, polymer-based electrophosphorescent devices with a peak luminance efficiency of 5.5 cd A(-1) (external quantum efficiency = 6 \%) and a maximum power-conversion efficiency of 5 Im W-1 can be realized.}, language = {en} } @article{LuszczynskaDobruchowskaGlowackietal.2006, author = {Luszczynska, Beata and Dobruchowska, Ewa and Glowacki, Ireneusz and Ulanski, Jacek and Jaiser, Frank and Yang, Xiaohui and Neher, Dieter and Danel, Andrzej}, title = {Poly(N-vinylcarbazole) doped with a pyrazoloquinoline dye : a deep blue light-emitting composite for light- emitting diode applications}, issn = {0021-8979}, doi = {10.1063/1.2162268}, year = {2006}, abstract = {We investigated the spectral properties of light-emitting diodes based on a deep blue-emitting pyrazoloquinoline dye doped into a poly(N-vinylcarbazole)-based matrix. Even though the electroluminescence (EL) of the host is redshifted and broadened with respect to the emission of the dye, the EL spectrum becomes fully dominated by the dye emission at concentrations of ca. 2 wt \%. This is attributed to a competition of exciplex formation on the matrix and exciton formation on the dye.}, language = {en} } @article{SteyrleuthnerSchubertJaiseretal.2010, author = {Steyrleuthner, Robert and Schubert, Marcel and Jaiser, Frank and Blakesley, James C. and Chen, Zhihua and Facchetti, Antonio and Neher, Dieter}, title = {Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer}, issn = {0935-9648}, doi = {10.1002/adma.201000232}, year = {2010}, abstract = {Bulk electron transport in a high mobility n-type polymer is studied by time-of-flight photocurrent measurements and electron-only devices. Bulk electron mobilities of similar to 5 x 10(-3) cm(2)/Vs are obtained. The analysis of the electron currents suggests the presence of an injection barrier for all conventionally used low workfunction cathodes.}, language = {en} } @article{SalertKruegerBagnichetal.2013, author = {Salert, Beatrice Ch. D. and Krueger, Hartmut and Bagnich, Sergey A. and Unger, Thomas and Jaiser, Frank and Al-Sa'di, Mahmoud and Neher, Dieter and Hayer, Anna and Eberle, Thomas}, title = {New polymer matrix system for phosphorescent organic light-emitting diodes and the role of the small molecular co-host}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {51}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.26409}, pages = {601 -- 613}, year = {2013}, abstract = {A new matrix system for phosphorescent organic light-emitting diodes (OLEDs) based on an electron transporting component attached to an inert polymer backbone, an electronically neutral co-host, and a phosphorescent dye that serves as both emitter and hole conductor are presented. The inert co-host is used either as small molecules or covalently connected to the same chain as the electron-transporting host. The use of a small molecular inert co-host in the active layer is shown to be highly advantageous in comparison to a purely polymeric matrix bearing the same functionalities. Analysis of the dye phosphorescence decay in pure polymer, small molecular co-host film, and their blend lets to conclude that dye molecules distribute mostly in the small molecular co-host phase, where the co-host prevents agglomeration and self-quenching of the phosphorescence as well as energy transfer to the electron transporting units. In addition, the co-host accumulates at the anode interface where it acts as electron blocking layer and improves hole injection. This favorable phase separation between polymeric and small molecular components results in devices with efficiencies of about 47 cd/A at a luminance of 1000 cd/m(2). Investigation of OLED degradation demonstrates the presence of two time regimes: one fast component that leads to a strong decrease at short times followed by a slower decrease at longer times. Unlike the long time degradation, the efficiency loss that occurs at short times is reversible and can be recovered by annealing of the device at 180 degrees C. We also show that the long-time degradation must be related to a change of the optical and electrical bulk properties.}, language = {en} } @article{AlSa'diJaiserBagnichetal.2012, author = {Al-Sa'di, Mahmoud and Jaiser, Frank and Bagnich, Sergey A. and Unger, Thomas and Blakesley, James C. and Wilke, Andreas and Neher, Dieter}, title = {Electrical and optical simulations of a polymer-based phosphorescent organic light-emitting diode with high efficiency}, series = {Journal of polymer science : B, Polymer physics}, volume = {50}, journal = {Journal of polymer science : B, Polymer physics}, number = {22}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23158}, pages = {1567 -- 1576}, year = {2012}, abstract = {A comprehensive numerical device simulation of the electrical and optical characteristics accompanied with experimental measurements of a new highly efficient system for polymer-based light-emitting diodes doped with phosphorescent dyes is presented. The system under investigation comprises an electron transporter attached to a polymer backbone blended with an electronically inert small molecule and an iridium-based green phosphorescent dye which serves as both emitter and hole transporter. The device simulation combines an electrical and an optical model. Based on the known highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of all components as well as the measured electrical and optical characteristics of the devices, we model the emissive layer as an effective medium using the dye's HOMO as hole transport level and the polymer LUMO as electron transport level. By fine-tuning the injection barriers at the electron and hole-injecting contact, respectively, in simulated devices, unipolar device characteristics were fitted to the experimental data. Simulations using the so-obtained set of parameters yielded very good agreement to the measured currentvoltage, luminancevoltage characteristics, and the emission profile of entire bipolar light-emitting diodes, without additional fitting parameters. The simulation was used to gain insight into the physical processes and the mechanisms governing the efficiency of the organic light-emitting diode, including the position and extent of the recombination zone, carrier concentration profiles, and field distribution inside the device. The simulations show that the device is severely limited by hole injection, and that a reduction of the hole-injection barrier would improve the device efficiency by almost 50\%.}, language = {en} } @article{YangJaiserKlingeretal.2006, author = {Yang, X. H. and Jaiser, Frank and Klinger, S and Neher, Dieter}, title = {Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles}, doi = {10.1063/1.2162693}, year = {2006}, abstract = {We report that the performances of blue polymer electrophosphorescent devices are crucially depending on the choice of the electron transporting material incorporated into the emissive layer. Devices with 1,3-bis[(4-tert- butylphenyl)-1,3,4-oxidiazolyl]phenylene (OXD-7) doped at similar to 40 wt\% into a poly(vinylcarbazole) matrix exhibited significantly higher efficiencies than those with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), yielding maximum luminous and power efficiency values of 18.2 Cd/A and 8.8 lm/W, respectively. Time resolved photoluminescence measurements revealed a long lifetime phosphorescence component in layers with PBD, which we assign to significant triplet harvesting by this electron-transporting component. (c) 2006 American Institute of Physics}, language = {en} } @article{YangJaiserNeheretal.2004, author = {Yang, Xiao Hui and Jaiser, Frank and Neher, Dieter and Lawson, PaDreyia V. and Br{\´e}das, Jean-Luc and Zojer, Egbert and G{\"u}ntner, Roland and Scanduicci de Freitas, Patricia and Forster, Michael and Scherf, Ullrich}, title = {Suppression of the keto-emission in polyfluorene light-emitting diodes : Experiments and models}, issn = {1616-301X}, year = {2004}, abstract = {The spectral characteristics of polyfluorene (PF)-based light-emitting diodes (LEDs) containing a defined low concentration of either keto-defects or of the polymer poly(9.9-octylfuorene-co-benzothiadiazole) (F8BT) are preseneted. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green blue emission components. It is shown that blending hole-transporting molecules into the emission layer at low concentration or incorporation of a suitable hole-transport layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto- containing PF layer. We conclude that the keto-defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum-mechanical calculations}, language = {en} }