@unpublished{Buerger2014, author = {B{\"u}rger, Gerd}, title = {Comment on "Bias correction, quantile mapping, and downscaling: revisiting the inflation issue"}, series = {Journal of climate}, volume = {27}, journal = {Journal of climate}, number = {4}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0894-8755}, doi = {10.1175/JCLI-D-13-00184.1}, pages = {1819 -- 1820}, year = {2014}, abstract = {In a recent paper, Maraun describes the adverse effects of quantile mapping on downscaling. He argues that when large-scale GCM variables are rescaled directly to small-scale fields or even station data, genuine small-scale covariability is lost and replaced by uniform variability inherited from the larger scales. This leads to a misrepresentation mainly of areal means and long-term trends. This comment acknowledges the former point, although the argument is relatively old, but disagrees with the latter, showing that grid-size long-term trends can be different from local trends. Finally, because it is partly incorrectly addressed, some clarification is added regarding the inflation issue, stressing that neither randomization nor inflation is free of unverified assumptions.}, language = {en} } @unpublished{FoehlischdeGrootOdeliusetal.2014, author = {F{\"o}hlisch, Alexander and de Groot, F. M. F. and Odelius, Michael and Techert, Simone and Wernet, P.}, title = {Comment on "state-dependent electron delocalization dynamics at the solute-solvent interface: soft-x-ray absorption spectroscopy and lambda b initio calculations"}, series = {Physical review letters}, volume = {112}, journal = {Physical review letters}, number = {12}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.112.129302}, pages = {2}, year = {2014}, language = {en} } @unpublished{HenkelPieplow2014, author = {Henkel, Carsten and Pieplow, Gregor}, title = {Reply to Comment on 'Fully covariant radiation force on a polarizable particle'}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/11/118002}, pages = {8}, year = {2014}, abstract = {We argue that the theories of Volokitin and Persson (2014 New J. Phys. 16 118001), Dedkov and Kyasov (2008 J. Phys.: Condens. Matter 20 354006), and Pieplow and Henkel (2013 New J. Phys. 15 023027) agree on the electromagnetic force on a small, polarizable particle that is moving parallel to a planar, macroscopic body, as far as the contribution of evanescent waves is concerned. The apparent differences are discussed in detail and explained by choices of units and integral transformations. We point out in particular the role of the Lorentz contraction in the procedure used by Volokitin and Persson, where a macroscopic body is 'diluted' to obtain the force on a small particle. Differences that appear in the contribution of propagating photons are briefly mentioned.}, language = {en} } @unpublished{HilczerGerhardScott2014, author = {Hilczer, B{\"o}rn and Gerhard, Reimund and Scott, James F.}, title = {Special Issue of Ferroelectrics in Honor of S. B. Lang}, series = {Ferroelectrics}, volume = {472}, journal = {Ferroelectrics}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0015-0193}, doi = {10.1080/00150193.2014.964099}, pages = {VII -- VIII}, year = {2014}, language = {en} } @unpublished{Gerhard2014, author = {Gerhard, Reimund}, title = {Sidney Lang - his collaboration with the University of Potsdam}, series = {Ferroelectrics}, volume = {472}, journal = {Ferroelectrics}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0015-0193}, doi = {10.1080/00150193.2014.967090}, pages = {5 -- 5}, year = {2014}, language = {en} }