@article{SeissAlbersSremčevićetal.2019, author = {Seiß, Martin and Albers, Nicole and Sremčević, Miodrag and Schmidt, J{\"u}rgen and Salo, Heikki and Seiler, Michael and Hoffmann, Holger and Spahn, Frank}, title = {Hydrodynamic Simulations of Moonlet-induced Propellers in Saturn's Rings}, series = {The astronomical journal}, volume = {157}, journal = {The astronomical journal}, number = {1}, publisher = {IOP Publishing Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.3847/1538-3881/aaed44}, pages = {11}, year = {2019}, abstract = {One of the biggest successes of the Cassini mission is the detection of small moons (moonlets) embedded in Saturns rings that cause S-shaped density structures in their close vicinity, called propellers. Here, we present isothermal hydrodynamic simulations of moonlet-induced propellers in Saturn's A ring that denote a further development of the original model. We find excellent agreement between these new hydrodynamic and corresponding N-body simulations. Furthermore, the hydrodynamic simulations confirm the predicted scaling laws and the analytical solution for the density in the propeller gaps. Finally, this mean field approach allows us to simulate the pattern of the giant propeller Bl{\´e}riot, which is too large to be modeled by direct N-body simulations. Our results are compared to two stellar occultation observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS), which intersect the propeller Bl{\´e}riot. Best fits to the UVIS optical depth profiles are achieved for a Hill radius of 590 m, which implies a moonlet diameter of about 860 m. Furthermore, the model favors a kinematic shear viscosity of the surrounding ring material of ν0 = 340 cm2 s-1, a dispersion velocity in the range of 0.3 cm s-1 < c0 < 1.5 cm s-1, and a fairly high bulk viscosity 7 < ξ0/ν0 < 17. These large transport values might be overestimated by our isothermal ring model and should be reviewed by an extended model including thermal fluctuations.}, language = {en} } @article{SchmaelzlinMoralejoGersondeetal.2018, author = {Schm{\"a}lzlin, Elmar Gerd and Moralejo, Benito and Gersonde, Ingo and Schleusener, Johannes and Darvin, Maxim E. and Thiede, Gisela and Roth, Martin M.}, title = {Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination}, series = {Journal of biomedical optics}, volume = {23}, journal = {Journal of biomedical optics}, number = {10}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.23.10.105001}, pages = {11}, year = {2018}, abstract = {Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{MannRahmstorfKornhuberetal.2018, author = {Mann, Michael E. and Rahmstorf, Stefan and Kornhuber, Kai and Steinman, Byron A. and Miller, Sonya K. and Petri, Stefan and Coumou, Dim}, title = {Projected changes in persistent extreme summer weather events}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {10}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aat3272}, pages = {9}, year = {2018}, abstract = {Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50\% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events.}, language = {en} } @article{RichterFoxWakkeretal.2018, author = {Richter, Philipp and Fox, Andrew J. and Wakker, Bart P. and Howk, J. Christopher and Lehner, Nicolas and Barger, Kathleen A. and Lockman, Felix J.}, title = {New constraints on the nature and origin of the leading arm of the magellanic stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {865}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aadd0f}, pages = {16}, year = {2018}, abstract = {We present a new precision measurement of gas-phase abundances of S, O, N, Si, Fe, P, Al, Ca as well as molecular hydrogen (H-2) in the Leading Arm (region II, LA II) of the Magellanic Stream (MS) toward the Seyfert galaxy NGC 3783. The results are based on high-quality archival ultraviolet/optical/radio data from various different instruments (HST/STIS, FUSE, AAT, GBT, GB140 ft, ATCA). Our study updates previous results from lower-resolution data and provides for the first time a self-consistent component model of the complex multiphase absorber, delivering important constraints on the nature and origin of LA II. We derive a uniform, moderate a abundance in the two main absorber groups at +245 and +190 km s(-1) of alpha/H = 0.30 +/- 0.05 solar, a low nitrogen abundance of N/H = 0.05 +/- 0.01 solar, and a high dust content with substantial dust depletion values for Si, Fe, Al, and Ca. These a, N, and dust abundances in LA II are similar to those observed in the Small Magellanic Cloud (SMC). From the analysis of the H2 absorption, we determine a high thermal pressure of P/k approximate to 1680 K cm(-3) in LA II, in line with the idea that LA II is located in the inner Milky Way halo at a z-height of < 20 kpc, where it hydrodynamically interacts with the ambient hot coronal gas. Our study supports a scenario in which LA II stems from the breakup of a metal- and dust-enriched progenitor cloud that was recently (200-500 Myr ago) stripped from the SMC.}, language = {en} } @article{GonzalezManriqueKuckeinColladosetal.2018, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Collados, M. and Denker, Carsten and Solanki, S. K. and Gomory, P. and Verma, Meetu and Balthasar, H. and Lagg, A. and Diercke, Andrea}, title = {Temporal evolution of arch filaments as seen in He I 10 830 angstrom}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832684}, pages = {11}, year = {2018}, abstract = {Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time.}, language = {en} } @article{BrueggerGobetSigletal.2018, author = {Br{\"u}gger, Sandra Olivia and Gobet, Erika and Sigl, Michael and Osmont, Dimitri and Papina, Tatyana and Rudaya, Natalia and Schwikowski-Gigar, Margit and Tinner, Willy}, title = {Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities}, series = {Global and planetary change}, volume = {169}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2018.07.010}, pages = {188 -- 201}, year = {2018}, abstract = {Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability.}, language = {en} } @article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} } @article{ThapaWyłomańskaSikoraetal.2021, author = {Thapa, Samudrajit and Wyłomańska, Agnieszka and Sikora, Grzegorz and Wagner, Caroline E. and Krapf, Diego and Kantz, Holger and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories}, series = {New Journal of Physics}, volume = {23}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges. ; IOP}, address = {Bad Honnef ; London}, issn = {1367-2630}, doi = {10.1088/1367-2630/abd50e}, pages = {22}, year = {2021}, abstract = {Extensive time-series encoding the position of particles such as viruses, vesicles, or individualproteins are routinely garnered insingle-particle tracking experiments or supercomputing studies.They contain vital clues on how viruses spread or drugs may be delivered in biological cells.Similar time-series are being recorded of stock values in financial markets and of climate data.Such time-series are most typically evaluated in terms of time-averaged mean-squareddisplacements (TAMSDs), which remain random variables for finite measurement times. Theirstatistical properties are different for differentphysical stochastic processes, thus allowing us toextract valuable information on the stochastic process itself. To exploit the full potential of thestatistical information encoded in measured time-series we here propose an easy-to-implementand computationally inexpensive new methodology, based on deviations of the TAMSD from itsensemble average counterpart. Specifically, we use the upper bound of these deviations forBrownian motion (BM) to check the applicability of this approach to simulated and real data sets.By comparing the probability of deviations fordifferent data sets, we demonstrate how thetheoretical bound for BM reveals additional information about observed stochastic processes. Weapply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracerbeads measured in mucin hydrogels, and of geographic surface temperature anomalies. Ouranalysis shows how the large-deviation properties can be efficiently used as a simple yet effectiveroutine test to reject the BM hypothesis and unveil relevant information on statistical propertiessuch as ergodicity breaking and short-time correlations.}, language = {en} } @article{WolfGuehr2019, author = {Wolf, Thomas and G{\"u}hr, Markus}, title = {Photochemical pathways in nucleobases measured with an X-ray FEL}, series = {Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences}, volume = {377}, journal = {Philosophical Transactions of the Royal Society of London, Series A : Mathematical, Physical and Engineering Sciences}, number = {2145}, publisher = {Royal Society}, address = {London}, issn = {1364-503X}, doi = {10.1098/rsta.2017.0473}, pages = {12}, year = {2019}, abstract = {The conversion of light energy into other molecular energetic degrees of freedom is often dominated by ultrafast, non-adiabatic processes. Femtosecond spectroscopy with optical pulses has helped in shaping our understanding of crucial processes in molecular energy-conversion. The advent of new, ultrashort and bright X-ray free electron laser sources opens the possibility to use X-ray-typical element and site sensitivity for ultrafast molecular research. We present two types of spectroscopy, ultrafast Auger and ultrafast X-ray absorption spectroscopy, and discuss their sensitivity to molecular processes. While Auger spectroscopy is able to monitor bond distance changes in the vicinity of an X-ray created core hole, near-edge absorption spectroscopy can deliver high-fidelity information on non-adiabatic transitions involving lone-pair orbitals. We demonstrate these features on the example of the UV-excited nucleobase thymine, investigated at the oxygen K-edge. We find a C-O bond elongation in the Auger data in addition to pi pi*/n pi* non-adiabatic transition in X-ray near-edge absorption. We compare the results from both methods and draw a conclusive scenario of non-adiabatic molecular relaxation after UV excitation.}, language = {en} } @article{StangeHintscheSachseetal.2017, author = {Stange, Maike and Hintsche, Marius and Sachse, Kirsten and Gerhardt, Matthias and Valleriani, Angelo and Beta, Carsten}, title = {Analyzing the spatial positioning of nuclei in polynuclear giant cells}, series = {Journal of Physics D: Applied Physics}, volume = {50}, journal = {Journal of Physics D: Applied Physics}, number = {46}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0022-3727}, doi = {10.1088/1361-6463/aa8da0}, pages = {8}, year = {2017}, abstract = {How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.}, language = {en} } @article{RobradeOskinovaSchmittetal.2018, author = {Robrade, Jan and Oskinova, Lida and Schmitt, J. H. M. M. and Leto, Paolo and Trigilio, C.}, title = {Outstanding X-ray emission from the stellar radio pulsar CU Virginis}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {619}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833492}, pages = {6}, year = {2018}, abstract = {Context. Among the intermediate-mass magnetic chemically peculiar (MCP) stars, CU Vir is one of the most intriguing objects. Its 100\% circularly polarized beams of radio emission sweep the Earth as the star rotates, thereby making this strongly magnetic star the prototype of a class of nondegenerate stellar radio pulsars. While CU Vir is well studied in radio, its high-energy properties are not known. Yet, X-ray emission is expected from stellar magnetospheres and confined stellar winds. Aims. Using X-ray data we aim to test CU Vir for intrinsic X-ray emission and investigate mechanisms responsible for its generation. Methods. We present X-ray observations performed with XMM-Newton and Chandra and study obtained X-ray images, light curves, and spectra. Basic X-ray properties are derived from spectral modelling and are compared with model predictions. In this context we investigate potential thermal and nonthermal X-ray emission scenarios. Results. We detect an X-ray source at the position of CU Vir. With LX approximate to 3 x 10(28) erg s(-1) it is moderately X-ray bright, but the spectrum is extremely hard compared to other Ap stars. Spectral modelling requires multi-component models with predominant hot plasma at temperatures of about T-X = 25MK or, alternatively, a nonthermal spectral component. Both types of model provide a virtually equivalent description of the X-ray spectra. The Chandra observation was performed six years later than those by XMM-Newton, yet the source has similar X-ray flux and spectrum, suggesting a steady and persistent X-ray emission. This is further confirmed by the X-ray light curves that show only mild X-ray variability. Conclusions. CU Vir is also an exceptional star at X-ray energies. To explain its full X-ray properties, a generating mechanism beyond standard explanations, like the presence of a low-mass companion or magnetically confined wind-shocks, is required. Magnetospheric activity might be present or, as proposed for fast-rotating strongly magnetic Bp stars, the X-ray emission of CU Vir is predominantly auroral in nature.}, language = {en} } @article{ShenDierckeDenker2019, author = {Shen, Z. and Diercke, Andrea and Denker, Carsten}, title = {Calibration of full-disk He i 10 830 angstrom filtergrams of the Chromospheric Telescope}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {339}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {9-10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201813536}, pages = {661 -- 671}, year = {2019}, abstract = {The Chromospheric Telescope (ChroTel) is a small 10-cm robotic telescope at Observatorio del Teide on Tenerife (Spain), which observes the entire sun in Hα, Ca ii K, and He i 10 830 {\AA}. We present a new calibration method that includes limb-darkening correction, removal of nonuniform filter transmission, and determination of He i Doppler velocities. Chromospheric full-disk filtergrams are often obtained with Lyot filters, which may display nonuniform transmission causing large-scale intensity variations across the solar disk. Removal of a 2D symmetric limb-darkening function from full-disk images results in a flat background. However, transmission artifacts remain and are even more distinct in these contrast-enhanced images. Zernike polynomials are uniquely appropriate to fit these large-scale intensity variations of the background. The Zernike coefficients show a distinct temporal evolution for ChroTel data, which is likely related to the telescope's alt-azimuth mount that introduces image rotation. In addition, applying this calibration to sets of seven filtergrams that cover the He i triplet facilitates the determination of chromospheric Doppler velocities. To validate the method, we use three datasets with varying levels of solar activity. The Doppler velocities are benchmarked with respect to cotemporal high-resolution spectroscopic data of the GREGOR Infrared Spectrograph (GRIS). Furthermore, this technique can be applied to ChroTel Hα and Ca ii K data. The calibration method for ChroTel filtergrams can be easily adapted to other full-disk data exhibiting unwanted large-scale variations. The spectral region of the He i triplet is a primary choice for high-resolution near-infrared spectropolarimetry. Here, the improved calibration of ChroTel data will provide valuable context data.}, language = {en} } @article{RychkovAltafim2018, author = {Rychkov, Dmitry and Altafim, Ruy Alberto Pisani}, title = {Template-based fluoroethylenepropylene ferroelectrets with enhanced thermal stability of piezoelectricity}, series = {Journal of applied physics}, volume = {124}, journal = {Journal of applied physics}, number = {17}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.5041374}, pages = {5}, year = {2018}, abstract = {In ferroelectrets, the piezoelectricity stems from the charges of both polarities trapped on the inner surfaces of the cavities in the material, so that its thermal stability is defined by the stability of the respective charges. In the present work, a template-based lamination technique has been employed to fabricate tubular-channel ferroelectrets from fluoroethylenepropylene (FEP) films. It has been shown that the piezoelectricity in FEP ferroelectrets decays at relatively low temperatures due to the inherently lower thermal stability of the positive charge. In order to improve charge trapping, we have treated both FEP films and inner surfaces of the ferroelectret cavities with titanium-tetrachloride vapor, using the atomic-layer-deposition technique. Using surface-potential-decay measurements on FEP films, we have found that the charge-decay curves shift by more than 100 degrees C to the higher temperatures as a result of the surface treatment. Direct measurements of piezoelectric d(33) coefficients as a function of temperature have shown that the piezoelectric stability is likewise improved with the d(33)-decay curves shifted by 60 degrees C to the right. The improvement of electret/ferroelectret properties can be attributed to the formation of the deeper traps on the chemically modified FEP surface. SEM micrographs and EDS analysis reveal island-like structures with titanium- and oxygen-containing species that can be responsible for the deeper trapping of the electret charges. Published by AIP Publishing.}, language = {en} } @article{SposiniChechkinMetzler2018, author = {Sposini, Vittoria and Chechkin, Aleksei V. and Metzler, Ralf}, title = {First passage statistics for diffusing diffusivity}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aaf6ff}, pages = {11}, year = {2018}, abstract = {A rapidly increasing number of systems is identified in which the stochastic motion of tracer particles follows the Brownian law < r(2)(t)> similar or equal to Dt yet the distribution of particle displacements is strongly non-Gaussian. A central approach to describe this effect is the diffusing diffusivity (DD) model in which the diffusion coefficient itself is a stochastic quantity, mimicking heterogeneities of the environment encountered by the tracer particle on its path. We here quantify in terms of analytical and numerical approaches the first passage behaviour of the DD model. We observe significant modifications compared to Brownian-Gaussian diffusion, in particular that the DD model may have a faster first passage dynamics. Moreover we find a universal crossover point of the survival probability independent of the initial condition.}, language = {en} } @article{JonscherFlemmingSchmittetal.2018, author = {Jonscher, Ernst and Flemming, Sven and Schmitt, Marius and Sabitzki, Ricarda and Reichard, Nick and Birnbaum, Jakob and Bergmann, B{\"a}rbel and H{\"o}hn, Katharina and Spielmann, Tobias}, title = {PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood Stage Parasites}, series = {Cell host \& microbe}, volume = {25}, journal = {Cell host \& microbe}, number = {1}, publisher = {Cell Press}, address = {Cambridge}, issn = {1931-3128}, doi = {10.1016/j.chom.2018.11.010}, pages = {166 -- 173}, year = {2018}, abstract = {During development in human erythrocytes, the malaria parasite Plasmodium falciparum internalizes a large part of the cellular content of the host cell. The internalized cytosol, consisting largely of hemoglobin, is transported to the parasite's food vacuole where it is degraded, providing nutrients and space for growth. This host cell cytosol uptake (HCCU) is crucial for parasite survival but the parasite proteins mediating this process remain obscure. Here, we identify P. falciparum VPS45 as an essential factor in HCCU. Conditional inactivation of PfVPS45 led to an accumulation of host cell cytosol-filled vesicles within the parasite and inhibited the delivery of hemoglobin to the parasite's digestive vacuole, resulting in arrested parasite growth. A proportion of these HCCU vesicle intermediates was positive for phosphatidylinositol 3-phosphate, suggesting endosomal characteristics. Thus PfVPS45 provides insight into the elusive machinery of the ingestion pathway in a parasite that contains an endolysosomal system heavily repurposed for protein secretion.}, language = {en} } @article{DybiecCapalaChechkinetal.2018, author = {Dybiec, Bartlomiej and Capala, Karol and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Conservative random walks in confining potentials}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aaefc2}, pages = {25}, year = {2018}, abstract = {Levy walks are continuous time random walks with spatio-temporal coupling of jump lengths and waiting times, often used to model superdiffusive spreading processes such as animals searching for food, tracer motion in weakly chaotic systems, or even the dynamics in quantum systems such as cold atoms. In the simplest version Levy walks move with a finite speed. Here, we present an extension of the Levy walk scenario for the case when external force fields influence the motion. The resulting motion is a combination of the response to the deterministic force acting on the particle, changing its velocity according to the principle of total energy conservation, and random velocity reversals governed by the distribution of waiting times. For the fact that the motion stays conservative, that is, on a constant energy surface, our scenario is fundamentally different from thermal motion in the same external potentials. In particular, we present results for the velocity and position distributions for single well potentials of different steepness. The observed dynamics with its continuous velocity changes enriches the theory of Levy walk processes and will be of use in a variety of systems, for which the particles are externally confined.}, language = {en} } @article{XueLiuWangetal.2019, author = {Xue, Rui and Liu, Ruo-Yu and Wang, Xiang-Yu and Yan, Huirong and B{\"o}ttcher, Markus}, title = {On the minimum jet power of TeV BL Lac objects in the p-gamma model}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {871}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaf720}, pages = {10}, year = {2019}, abstract = {We study the requirement of the jet power in the conventional p-gamma models (photopion production and Bethe-Heitler pair production) for TeV BL Lac objects. We select a sample of TeV BL Lac objects whose spectral energy distributions are difficult to explain by the one-zone leptonic model. Based on the relation between the p-gamma interaction efficiency and the opacity of gamma gamma absorption, we find that the detection of TeV emission poses upper limits on the p-gamma interaction efficiencies in these sources and hence minimum jet powers can be derived accordingly. We find that the obtained minimum jet powers exceed the Eddington luminosity of the supermassive black holes (SMBHs). Implications for the accretion mode of the SMBHs in these BL Lac objects and the origin of their TeV emissions are discussed.}, language = {en} } @article{LiuYanWangetal.2019, author = {Liu, Ruo-Yu and Yan, Huirong and Wang, Xiang-Yu and Shao, Shi and Li, Hui}, title = {Gamma-Ray production in the extended halo of the galaxy and possible implications for the origin of galactic cosmic rays}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {871}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaf567}, pages = {11}, year = {2019}, abstract = {Various studies have implied the existence of a gaseous halo around the Galaxy extending out to similar to 100 kpc. Galactic cosmic rays (CRs) that propagate to the halo, either by diffusion or by convection with the possibly existing large-scale Galactic wind, can interact with the gas therein and produce gamma-rays via proton-proton collision. We calculate the CR distribution in the halo and the gamma-ray flux, and explore the dependence of the result on model parameters such as diffusion coefficient, CR luminosity, and CR spectral index. We find that the current measurement of isotropic gamma-ray background (IGRB) at less than or similar to TeV with the Fermi Large Area Telescope already approaches a level that can provide interesting constraints on the properties of Galactic CR (e.g., with CR luminosity L-CR <= 1041 erg s(-1)). We also discuss the possibilities of the Fermi bubble and IceCube neutrinos originating from the proton-proton collision between CRs and gas in the halo, as well as the implication of our results for the baryon budget of the hot circumgalactic medium of our Galaxy. Given that the isotropic gamma-ray background is likely to be dominated by unresolved extragalactic sources, future telescopes may extract more individual sources from the IGRB, and hence put even more stringent restrictions on the relevant quantities (such as Galactic CR luminosity and baryon budget in the halo) in the presence of a turbulent halo that we consider.}, language = {en} } @misc{LewandowskyCowtanRisbeyetal.2018, author = {Lewandowsky, Stephan and Cowtan, Kevin and Risbey, James S. and Mann, Michael E. and Steinman, Byron A. and Oreskes, Naomi and Rahmstorf, Stefan}, title = {The 'pause' in global warming in historical context}, series = {Environmental research letters}, volume = {13}, journal = {Environmental research letters}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aaf372}, pages = {25}, year = {2018}, abstract = {We review the evidence for a putative early 21st-century divergence between global mean surface temperature (GMST) and Coupled Model Intercomparison Project Phase 5 (CMIP5) projections. We provide a systematic comparison between temperatures and projections using historical versions of GMST products and historical versions of model projections that existed at the times when claims about a divergence were made. The comparisons are conducted with a variety of statistical techniques that correct for problems in previous work, including using continuous trends and a Monte Carlo approach to simulate internal variability. The results show that there is no robust statistical evidence for a divergence between models and observations. The impression of a divergence early in the 21st century was caused by various biases in model interpretation and in the observations, and was unsupported by robust statistics.}, language = {en} } @article{Goychuk2018, author = {Goychuk, Igor}, title = {Viscoelastic subdiffusion in a random Gaussian environment}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {37}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp05238g}, pages = {24140 -- 24155}, year = {2018}, abstract = {Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.}, language = {en} } @misc{RisbeyLewandowskyCowtanetal.2018, author = {Risbey, James S. and Lewandowsky, Stephan and Cowtan, Kevin and Oreskes, Naomi and Rahmstorf, Stefan and Jokim{\"a}ki, Ari and Foster, Grant}, title = {A fluctuation in surface temperature in historical context}, series = {Environmental research letters}, volume = {13}, journal = {Environmental research letters}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aaf342}, pages = {23}, year = {2018}, abstract = {This work reviews the literature on an alleged global warming 'pause' in global mean surface temperature (GMST) to determine how it has been defined, what time intervals are used to characterise it, what data are used to measure it, and what methods used to assess it. We test for 'pauses', both in the normally understood meaning of the term to mean no warming trend, as well as for a 'pause' defined as a substantially slower trend in GMST. The tests are carried out with the historical versions of GMST that existed for each pause-interval tested, and with current versions of each of the GMST datasets. The tests are conducted following the common (but questionable) practice of breaking the linear fit at the start of the trend interval ('broken' trends), and also with trends that are continuous with the data bordering the trend interval. We also compare results when appropriate allowance is made for the selection bias problem. The results show that there is little or no statistical evidence for a lack of trend or slower trend in GMST using either the historical data or the current data. The perception that there was a 'pause' in GMST was bolstered by earlier biases in the data in combination with incomplete statistical testing.}, language = {en} } @article{BaranOstensenTeltingetal.2018, author = {Baran, Andrzej S. and Ostensen, R. H. and Telting, J. H. and Vos, Joris and Kilkenny, D. and Vuckovic, Maja and Reed, M. D. and Silvotti, R. and Jeffery, C. Simon and Parsons, Steven G. and Dhillon, V. S. and Marsh, T. R.}, title = {Pulsations and eclipse-time analysis of HW Vir}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2473}, pages = {2721 -- 2735}, year = {2018}, abstract = {We analysed recent K2 data of the short-period eclipsing binary system HW Vir, which consists of a hot subdwarf-B type primary with an M-dwarf companion. We determined the mid-times of eclipses, calculated O-C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26 M-circle dot, which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 mu Hz, with the majority of peaks found below 2600 mu Hz. The amplitudes are below 0.1 part-per-thousand, too low to be detected with ground-based photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HW Vir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HW Vir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit.}, language = {en} } @misc{DolezalovaKubatovaKubatetal.2019, author = {Dolezalova, Barbora and Kubatova, Brankica and Kubat, Jiri and Hamann, Wolf-Rainer}, title = {The Quasi-WR Star HD 45166 Revisited}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {197 -- 200}, year = {2019}, abstract = {We studied the wind of the quasi Wolf-Rayet (qWR) star HD 45166. As a first step we modeled the observed UV spectra of this star by means of the state-of-the-art Potsdam Wolf-Rayet (PoWR) atmosphere code. We inferred the wind parameters and compared them with previous findings.}, language = {en} } @article{GajdaWylomanskaKantzetal.2018, author = {Gajda, J. and Wylomanska, Agnieszka and Kantz, Holger and Chechkin, Aleksei V. and Sikora, Grzegorz}, title = {Large deviations of time-averaged statistics for Gaussian processes}, series = {Statistics \& Probability Letters}, volume = {143}, journal = {Statistics \& Probability Letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-7152}, doi = {10.1016/j.spl.2018.07.013}, pages = {47 -- 55}, year = {2018}, abstract = {In this paper we study the large deviations of time averaged mean square displacement (TAMSD) for Gaussian processes. The theory of large deviations is related to the exponential decay of probabilities of large fluctuations in random systems. From the mathematical point of view a given statistics satisfies the large deviation principle, if the probability that it belongs to a certain range decreases exponentially. The TAMSD is one of the main statistics used in the problem of anomalous diffusion detection. Applying the theory of generalized chi-squared distribution and sub-gamma random variables we prove the upper bound for large deviations of TAMSD for Gaussian processes. As a special case we consider fractional Brownian motion, one of the most popular models of anomalous diffusion. Moreover, we derive the upper bound for large deviations of the estimator for the anomalous diffusion exponent. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{MardoukhiChechkinMetzler2020, author = {Mardoukhi, Yousof and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Spurious ergodicity breaking in normal and fractional Ornstein-Uhlenbeck process}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {IOP}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab950b}, pages = {18}, year = {2020}, abstract = {The Ornstein-Uhlenbeck process is a stationary and ergodic Gaussian process, that is fully determined by its covariance function and mean. We show here that the generic definitions of the ensemble- and time-averaged mean squared displacements fail to capture these properties consistently, leading to a spurious ergodicity breaking. We propose to remedy this failure by redefining the mean squared displacements such that they reflect unambiguously the statistical properties of any stochastic process. In particular we study the effect of the initial condition in the Ornstein-Uhlenbeck process and its fractional extension. For the fractional Ornstein-Uhlenbeck process representing typical experimental situations in crowded environments such as living biological cells, we show that the stationarity of the process delicately depends on the initial condition.}, language = {en} } @book{Feldmeier2019, author = {Feldmeier, Achim}, title = {Theoretical Fluid Dynamics}, series = {Theoretical and Mathematical Physics}, journal = {Theoretical and Mathematical Physics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-31021-9 (online)}, doi = {10.1007/978-3-030-31022-6}, pages = {XVI, 569}, year = {2019}, language = {en} } @misc{GruendePaterShowalteretal.2006, author = {Gr{\"u}n, Eberhard and de Pater, Imke and Showalter, Mark and Spahn, Frank and Srama, Ralf}, title = {Physics of dusty rings: History and perspective}, series = {Planetary and space science}, volume = {54}, journal = {Planetary and space science}, number = {9-10}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2006.05.005}, pages = {837 -- 843}, year = {2006}, language = {en} } @article{MakuchBrilliantovSremcevicetal.2006, author = {Makuch, Martin and Brilliantov, Nikolai V. and Sremcevic, Miodrag and Spahn, Frank and Krivov, Alexander V.}, title = {Stochastic circumplanetary dynamics of rotating non-spherical dust particles}, series = {Planetary and space science}, volume = {54}, journal = {Planetary and space science}, number = {9-10}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2006.05.006}, pages = {855 -- 870}, year = {2006}, abstract = {We develop a model of stochastic radiation pressure for rotating non-spherical particles and apply the model to circumplanetary dynamics of dust grains. The stochastic properties of the radiation pressure are related to the ensemble-averaged characteristics of the rotating particles, which are given in terms of the rotational time-correlation function of a grain. We investigate the model analytically and show that an ensemble of particle trajectories demonstrates a diffusion-like behaviour. The analytical results are compared with numerical simulations, performed for the motion of the dusty ejecta from Deimos in orbit around Mars. We find that the theoretical predictions are in a good agreement with the simulation results. The agreement however deteriorates at later time, when the impact of non-linear terms, neglected in the analytic approach, becomes significant. Our results indicate that the stochastic modulation of the radiation pressure can play an important role in the circumplanetary dynamics of dust and may in case of some dusty systems noticeably alter an optical depth. (c) 2006 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BeckerPettiniRafelskietal.2019, author = {Becker, George D. and Pettini, Max and Rafelski, Marc and Boera, Elisa and Christensen, Lise and Cupani, Guido and Ellison, Sara L. and Farina, Emanuele Paolo and Fumagalli, Michele and Lopez, Sebastian and Neeleman, Marcel and Ryan-Weber, Emma and Worseck, Gabor}, title = {The Evolution of OI over 3.2 < z < 6.5: Reionization of the Circumgalactic Medium}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab3eb5}, pages = {37}, year = {2019}, abstract = {We present a survey for metal absorption systems traced by neutral oxygen over 3.2 < z < 6.5. Our survey uses Keck/ESI and VLT/X-Shooter spectra of 199 QSOs with redshifts up to 6.6. In total, we detect 74 OI absorbers, of which 57 are separated from the background QSO by more than 5000 km s(-1). We use a maximum likelihood approach to fit the distribution of OI lambda 1302 equivalent widths in bins of redshift and from this determine the evolution in number density of absorbers with W-1302 > 0.05 angstrom, of which there are 49 nonproximate systems in our sample. We find that the number density does not monotonically increase with decreasing redshift, as would naively be expected from the buildup of metal-enriched circumgalactic gas with time. The number density over 4.9 < z < 5.7 is a factor of 1.7-4.1 lower (68\% confidence) than that over 5.7 < z < 6.5, with a lower value at z < 5.7 favored with 99\% confidence. This decrease suggests that the fraction of metals in a low-ionization phase is larger at z similar to 6 than at lower redshifts. Absorption from highly ionized metals traced by CIV is also weaker in higher-redshift OI systems, supporting this picture. The evolution of OI absorbers implies that metal-enriched circumgalactic gas at z similar to 6 is undergoing an ionization transition driven by a strengthening ultraviolet background. This in turn suggests that the reionization of the diffuse intergalactic medium may still be ongoing at or only recently ended by this epoch.}, language = {en} } @article{WilkinParrishYangetal.2019, author = {Wilkin, Kyle J. and Parrish, Robert M. and Yang, Jie and Wolf, Thomas J. A. and Nunes, J. Pedro F. and G{\"u}hr, Markus and Li, Renkai and Shen, Xiaozhe and Zheng, Qiang and Wang, Xijie and Martinez, Todd J. and Centurion, Martin}, title = {Diffractive imaging of dissociation and ground-state dynamics in a complex molecule}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {100}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.100.023402}, pages = {10}, year = {2019}, abstract = {We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p perpendicular to orbital to a mixed 5p parallel to sigma hole and CF2 center dot antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (nonbridged) structure in less than 200 fs.}, language = {en} } @article{WolfParrishMyhreetal.2019, author = {Wolf, Thomas J. A. and Parrish, Robert M. and Myhre, Rolf H. and Martinez, Todd J. and Koch, Henrik and G{\"u}hr, Markus}, title = {Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {123}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.9b05573}, pages = {6897 -- 6903}, year = {2019}, abstract = {We studied the photoinduced ultrafast relaxation dynamics of the nucleobase thymine using gas-phase time-resolved photoelectron spectroscopy. By employing extreme ultraviolet pulses from high harmonic generation for photoionization, we substantially extend our spectral observation window with respect to previous studies. This enables us to follow relaxation of the excited state population all the way to low-lying electronic states including the ground state. In thymine, we observe relaxation from the optically bright (1)pi pi* state of thymine to a dark (1)n pi* state within 80 +/- 30 fs. The (1)n pi* state relaxes further within 3.5 +/- 0.3 ps to a low-lying electronic state. By comparison with quantum chemical simulations, we can unambiguously assign its spectroscopic signature to the (3)pi pi* state. Hence, our study draws a comprehensive picture of the relaxation mechanism of thymine including ultrafast intersystem crossing to the triplet manifold.}, language = {en} } @article{RinaldiFormisanoKappeletal.2019, author = {Rinaldi, G. and Formisano, M. and Kappel, David and Capaccioni, F. and Bockelee-Morvan, D. and Cheng, Y-C and Vincent, J-B and Deshapriya, P. and Arnold, G. and Capria, M. T. and Ciarniello, M. and De Sanctis, M. C. and Doose, L. and Erard, S. and Federico, C. and Filacchione, G. and Fink, U. and Leyrat, C. and Longobardo, A. and Magni, G. and Mighorini, A. and Mottola, S. and Naletto, G. and Raponi, A. and Taylor, F. and Tosi, F. and Tozzi, G. P. and Salatti, M.}, title = {Analysis of night-side dust activity on comet 67P observed by VIRTIS-M}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834907}, pages = {16}, year = {2019}, abstract = {On 2015 July 18, near perihelion at a heliocentric distance of 1.28 au, the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-M) on board the Rosetta spacecraft had the opportunity of observing dust activity in the inner coma with a view of the night side (shadowed side) of comet 67P/Churyumov-Gerasimenko. At the time of the measurements we present here, we observe a dust plume that originates on the far side of the nucleus. We are able to identify the approximate location of its source at the boundary between the Hapi and Anuket regions, and we find that it has been in darkness for some hours before the observation. Assuming that this time span is equal to the conductive time scale, we obtain a thermal inertia in the range 25-36 W K-1 m(-2) s(-1/2). These thermal inertia values can be used to verify with a 3D finite-element method (REM) numerical code whether the surface and subsurface temperatures agree with the values found in the literature. We explored three different configurations: (1) a layer of water ice mixed with dust beneath a dust mantle of 5 mm with thermal inertia of 36 J m(-2) K-1 S-0.5 ; (2) the same structure, but with thermal inertia of 100 J m(-2) K-1 S-0.5; (3) an ice-dust mixture that is directly exposed. Of these three configurations, the first seems to be the most reasonable, both for the low thermal inertia and for the agreement with the surface and subsurface temperatures that have been found for the comet 67P/Churyumov-Gerasimenko. The spectral properties of the plume show that the visible dust color ranged from 16 +/- 4.8\%/100 nm to 13 +/- 2.6\%/100 nm, indicating that this plume has no detectable color gradient. The morphology of the plume can be classified as a narrow jet that has an estimated total ejected mass of between 6 and 19 tons when we assume size distribution indices between -2.5 and -3.}, language = {en} } @article{TubianaRinaldiGuettleretal.2019, author = {Tubiana, C. and Rinaldi, G. and Guettler, C. and Snodgrass, C. and Shi, X. and Hu, X. and Marschall, R. and Fulle, M. and Bockeele-Morvan, D. and Naletto, G. and Capaccioni, F. and Sierks, H. and Arnold, G. and Barucci, M. A. and Bertaux, J-L and Bertini, I and Bodewits, D. and Capria, M. T. and Ciarniello, M. and Cremonese, G. and Crovisier, J. and Da Deppo, V and Debei, S. and De Cecco, M. and Deller, J. and De Sanctis, M. C. and Davidsson, B. and Doose, L. and Erard, S. and Filacchione, G. and Fink, U. and Formisano, M. and Fornasier, S. and Gutierrez, P. J. and Ip, W-H and Ivanovski, S. and Kappel, David and Keller, H. U. and Kolokolova, L. and Koschny, D. and Krueger, H. and La Forgia, F. and Lamy, P. L. and Lara, L. M. and Lazzarin, M. and Levasseur-Regourd, A. C. and Lin, Z-Y and Longobardo, A. and Lopez-Moreno, J. J. and Marzari, F. and Migliorini, A. and Mottola, S. and Rodrigo, R. and Taylor, F. and Toth, I and Zakharov, V}, title = {Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834869}, pages = {14}, year = {2019}, abstract = {Context. On 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS and VIRTIS-M instruments on board the Rosetta spacecraft simultaneously observed the evolving dust and gas coma during a complete rotation of the comet. Aims. We aim to characterize the spatial distribution of dust, H2O, and CO2 gas in the inner coma. To do this, we performed a quantitative analysis of the release of dust and gas and compared the observed H2O production rate with the rate we calculated using a thermophysical model. Methods. For this study we selected OSIRIS WAC images at 612 nm (dust) and VIRTIS-M image cubes at 612 nm, 2700 nm (H2O emission band), and 4200 nm (CO2 emission band). We measured the average signal in a circular annulus to study the spatial variation around the comet, and in a sector of the annulus to study temporal variation in the sunward direction with comet rotation, both at a fixed distance of 3.1 km from the comet center. Results. The spatial correlation between dust and water, both coming from the sunlit side of the comet, shows that water is the main driver of dust activity in this time period. The spatial distribution of CO2 is not correlated with water and dust. There is no strong temporal correlation between the dust brightness and water production rate as the comet rotates. The dust brightness shows a peak at 0 degrees subsolar longitude, which is not pronounced in the water production. At the same epoch, there is also a maximum in CO2 production. An excess of measured water production with respect to the value calculated using a simple thermophysical model is observed when the head lobe and regions of the southern hemisphere with strong seasonal variations are illuminated (subsolar longitude 270 degrees-50 degrees). A drastic decrease in dust production when the water production (both measured and from the model) displays a maximum occurs when typical northern consolidated regions are illuminated and the southern hemisphere regions with strong seasonal variations are instead in shadow (subsolar longitude 50 degrees-90 degrees). Possible explanations of these observations are presented and discussed.}, language = {en} } @article{BaranTeltingJefferyetal.2019, author = {Baran, Andrzej S. and Telting, J. H. and Jeffery, C. Simon and Ostensen, R. H. and Vos, Joris and Reed, M. D. and Vŭcković, Maja}, title = {K2 observations of the sdBV plus dM/bd binaries PHL457 and EQPsc}, series = {Monthly notices of the Royal Astronomical Society}, volume = {489}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz2209}, pages = {1556 -- 1571}, year = {2019}, abstract = {We present an analysis of two pulsating subdwarf B stars PHL 457 and EQ Psc observed during the K2 mission. The K2 light curves of both stars show variation consistent with irradiation of a cooler companion by the hot subdwarf. They also show higher frequency oscillations consistent with pulsation. Using new spectroscopic data, we measured the radial velocity, effective temperature, surface gravity, and helium abundance of both hot subdwarfs as a function of orbital phase. We confirm the previously published spectroscopic orbit of PHL 457, and present the first spectroscopic orbit of EQ Psc. The orbital periods are 0.313 and 0.801 d, respectively. For EQPsc, we find a strong correlation between T-eff and orbital phase, due to contribution of light from the irradiated companion. We calculated amplitude spectra, identified significant pulsation frequencies, and searched for multiplets and asymptotic period spacings. By means of multiplets and period spacing, we identified the degrees of several pulsation modes in each star. The g-mode multiplets indicate subsynchronous core rotation with periods of 4.6 d (PHL 457) and 9.4 d (EQ Psc). We made spectral energy disctribution (SED) fits of PHL 457 and EQ Psc using available broad-band photometry and Gaia data. While the SED of PHL 457 shows no evidence of a cool companion, the SED for EQPsc clearly shows an infrared (IR) access consistent with a secondary with a temperature of about 6800K and a radius of 0.23 R-circle dot. This is the first detection of an IR access in any sdB + dM binary.}, language = {en} } @misc{LazarianYan2019, author = {Lazarian, Alexander and Yan, Huirong}, title = {Erratum: Superdiffusion of Cosmic Rays: Implications for Cosmic Ray Acceleration (The American Astronomical Society. - Vol. 784, (2014), 38)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab50ba}, pages = {1}, year = {2019}, abstract = {Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian \& Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x 3 for freely streaming CRs. The dependence changes to x 3/2 for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.}, language = {en} } @article{EliazarMetzlerReuveni2019, author = {Eliazar, Iddo and Metzler, Ralf and Reuveni, Shlomi}, title = {Poisson-process limit laws yield Gumbel max-min and min-max}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.022129}, pages = {12}, year = {2019}, abstract = {"A chain is only as strong as its weakest link" says the proverb. But what about a collection of statistically identical chains: How long till all chains fail? The answer to this question is given by the max-min of a matrix whose (i,j)entry is the failure time of link j of chain i: take the minimum of each row, and then the maximum of the rows' minima. The corresponding min-max is obtained by taking the maximum of each column, and then the minimum of the columns' maxima. The min-max applies to the storage of critical data. Indeed, consider multiple backup copies of a set of critical data items, and consider the (i,j) matrix entry to be the time at which item j on copy i is lost; then, the min-max is the time at which the first critical data item is lost. In this paper we address random matrices whose entries are independent and identically distributed random variables. We establish Poisson-process limit laws for the row's minima and for the columns' maxima. Then, we further establish Gumbel limit laws for the max-min and for the min-max. The limit laws hold whenever the entries' distribution has a density, and yield highly applicable approximation tools and design tools for the max-min and min-max of large random matrices. A brief of the results presented herein is given in: Gumbel central limit theorem for max-min and min-max}, language = {en} } @article{EliazarMetzlerReuveni2019, author = {Eliazar, Iddo and Metzler, Ralf and Reuveni, Shlomi}, title = {Gumbel central limit theorem for max-min and min-max}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.020104}, pages = {6}, year = {2019}, abstract = {The max-min and min-max of matrices arise prevalently in science and engineering. However, in many real-world situations the computation of the max-min and min-max is challenging as matrices are large and full information about their entries is lacking. Here we take a statistical-physics approach and establish limit laws—akin to the central limit theorem—for the max-min and min-max of large random matrices. The limit laws intertwine random-matrix theory and extreme-value theory, couple the matrix dimensions geometrically, and assert that Gumbel statistics emerge irrespective of the matrix entries' distribution. Due to their generality and universality, as well as their practicality, these results are expected to have a host of applications in the physical sciences and beyond.}, language = {en} } @article{SoupionaSamarasOrtizAmezcuaetal.2019, author = {Soupiona, Ourania and Samaras, Stefanos and Ortiz-Amezcua, Pablo and B{\"o}ckmann, Christine and Papayannis, Alexandros D. and Moreira, Gregori De Arruda and Benavent-Oltra, Jose Antonio and Guerrero-Rascado, Juan Luis and Bedoya-Vel{\´a}squez, Andres Esteban and Olmo-Reyes, Francisco Jos{\´e} and Rom{\´a}n, Roberto and Kokkalis, Panagiotis and Mylonaki, Maria and Alados-Arboledas, Lucas and Papanikolaou, Christina Anna and Foskinis, Romanos}, title = {Retrieval of optical and microphysical properties of transported Saharan dust over Athens and Granada based on multi-wavelength Raman lidar measurements: Study of the mixing processes}, series = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, volume = {214}, journal = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, publisher = {Elsevier}, address = {Oxford}, issn = {1352-2310}, doi = {10.1016/j.atmosenv.2019.116824}, pages = {15}, year = {2019}, abstract = {In this paper we extract the aerosol microphysical properties for a collection of mineral dust cases measured by multi-wavelength depolarization Raman lidar systems located at the National Technical University of Athens (NTUA, Athens, Greece) and the Andalusian Institute for Earth System Research (IISTA-CEAMA, Granada, Spain). The lidar-based retrievals were carried out with the Spheroidal Inversion eXperiments software tool (SphInX) developed at the University of Potsdam (Germany). The software uses regularized inversion of a two-dimensional enhancement of the Mie model based on the spheroid-particle approximation with the aspect ratio determining the particle shape. The selection of the cases was based on the transport time from the source regions to the measuring sites. The aerosol optical depth as measured by AERONET ranged from 0.27 to 0.54 (at 500 nm) depending on the intensity of each event. Our analysis showed the hourly mean particle linear depolarization ratio and particle lidar ratio values at 532 nm ranging from 11 to 34\% and from 42 to 79 sr respectively, depending on the mixing status, the corresponding air mass pathways and their transport time. Cases with shorter transport time showed good agreement in terms of the optical and SphInX-retrieved microphysical properties between Athens and Granada providing a complex refractive index value equal to 1.4 + 0.004i. On the other hand, the results for cases with higher transport time deviated from the aforementioned ones as well as from each other, providing, in particular, an imaginary part of the refractive index ranging from 0.002 to 0.005. Reconstructions of two-dimensional shape-size distributions for each selected layer showed that the dominant effective particle shape was prolate with diverse spherical contributions. The retrieved volume concentrations reflect overall the intensity of the episodes.}, language = {en} } @article{PittarelloGoderisSoensetal.2019, author = {Pittarello, Lidia and Goderis, Steven and Soens, Bastien and McKibbin, Seann J. and Giuli, Gabriele and Bariselli, Federico and Dias, Bruno and Helber, Bernd and Lepore, Giovanni Orazio and Vanhaecke, Frank and K{\"o}berl, Christian and Magin, Thierry E. and Claeys, Philippe}, title = {Meteoroid atmospheric entry investigated with plasma flow experiments: Petrography and geochemistry of the recovered material}, series = {Icarus : international journal of solar system studies}, volume = {331}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2019.04.033}, pages = {170 -- 178}, year = {2019}, abstract = {Melting experiments attempting to reproduce some of the processes affecting asteroidal and cometary material during atmospheric entry have been performed in a high enthalpy facility. For the first time with the specific experimental setup, the resulting material has been recovered, studied, and compared with natural analogues, focusing on the thermal and redox reactions triggered by interaction between the melt and the atmospheric gases under high temperature and low pressure conditions. Experimental conditions were tested across a range of parameters, such as heat flux, experiment duration, and pressure, using two types of sample holders materials, namely cork and graphite. A basalt served as asteroidal analog and to calibrate the experiments, before melting a H5 ordinary chondrite meteorite. The quenched melt recovered after the experiments has been analyzed by mu-XRF, EDS-SEM, EMPA, LA-ICP-MS, and XANES spectroscopy. The glass formed from the basalt is fairly homogeneous, depleted in highly volatile elements (e.g., Na, K), relatively enriched in moderately siderophile elements (e.g., Co, Ni), and has reached an equilibrium redox state with a lower Fe3+/Fe-tot ratio than that in the starting material. Spherical objects, enriched in SiO2, Na2O and K2O, were observed, inferring condensation from the vaporized material. Despite instantaneous quenching, the melt formed from the ordinary chondrite shows extensive crystallization of mostly olivine and magnetite, the latter indicative of oxygen fugacity compatible with presence of both Fe2+ and Fe3+. Similar features have been observed in natural meteorite fusion crusts and in micrometeorites, implying that, at least in terms of maximum temperature reached and chemical reactions, the experiments have successfully reproduced the conditions likely encountered by extraterrestrial material following atmospheric entry.}, language = {en} } @article{PoeschelBrilliantovFormella2006, author = {Poeschel, Thorsten and Brilliantov, Nikolai V. and Formella, Arno}, title = {Impact of high-energy tails on granular gas properties}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {74}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {The American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.74.041302}, pages = {5}, year = {2006}, abstract = {The velocity distribution function of granular gases in the homogeneous cooling state as well as some heated granular gases decays for large velocities as f proportional to exp(-const x nu). That is, its high-energy tail is overpopulated as compared with the Maxwell distribution. At the present time, there is no theory to describe the influence of the tail on the kinetic characteristics of granular gases. We develop an approach to quantify the overpopulated tail and analyze its impact on granular gas properties, in particular on the cooling coefficient. We observe and explain anomalously slow relaxation of the velocity distribution function to its steady state.}, language = {en} } @article{Goychuk2017, author = {Goychuk, Igor}, title = {Fractional Bhatnagar-Gross-Krook kinetic equation}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {90}, journal = {The European physical journal : B, Condensed matter and complex systems}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2017-80297-x}, pages = {13}, year = {2017}, abstract = {The linear Boltzmann equation approach is generalized to describe fractional superdiffusive transport of the Levy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional linear Boltzmann equation approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.}, language = {en} } @article{DelleSideNassisiPennettaetal.2017, author = {Delle Side, Domenico and Nassisi, Vincenzo and Pennetta, Cecilia and Alifano, Pietro and Di Salvo, Marco and Tala, Adelfia and Chechkin, Aleksei V. and Seno, Flavio and Trovato, Antonio}, title = {Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property}, series = {Royal Society Open Science}, volume = {4}, journal = {Royal Society Open Science}, publisher = {Royal Society}, address = {London}, issn = {2054-5703}, doi = {10.1098/rsos.171586}, pages = {12}, year = {2017}, abstract = {We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distributions of photon emission times, previously measured for bacterial colonies of Vibrio jasicida, a luminescent bacterium belonging to the Harveyi clade, growing in a highly drying environment. A distinctive and novel feature of the proposed model is bioluminescence 'quenching' after a given time elapsed from activation. Using an advanced fitting procedure based on the simulated annealing algorithm, we are able to infer from the experimental observations the biochemical parameters used in the model. Such parameters are in good agreement with the literature data. As a further result, we find that, at least in our experimental conditions, light emission in bioluminescent bacteria appears to originate from a subtle balance between colony growth and quorum activation due to autoinducers diffusion, with the two phenomena occurring on the same time scale. This finding is consistent with a negative feedback mechanism previously reported for Vibrio harveyi.}, language = {en} } @article{JavanainenMartinezSearaMetzleretal.2017, author = {Javanainen, Matti and Martinez-Seara, Hector and Metzler, Ralf and Vattulainen, Ilpo}, title = {Diffusion of Integral Membrane Proteins in Protein-Rich Membranes}, series = {The journal of physical chemistry letters}, volume = {8}, journal = {The journal of physical chemistry letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.7b01758}, pages = {4308 -- 4313}, year = {2017}, abstract = {The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbruck (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D proportional to ln(1/R). However, instead of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes-like dependence D proportional to 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different from protein-poor conditions and plays a significant role in formation of functional multiprotein complexes.}, language = {en} } @article{PalyulinMantsevichKlagesetal.2017, author = {Palyulin, Vladimir V. and Mantsevich, Vladimir N. and Klages, Rainer and Metzler, Ralf and Chechkin, Aleksei V.}, title = {Comparison of pure and combined search strategies for single and multiple targets}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {90}, journal = {The European physical journal : B, Condensed matter and complex systems}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2017-80372-4}, pages = {20 -- 37}, year = {2017}, abstract = {We address the generic problem of random search for a point-like target on a line. Using the measures of search reliability and efficiency to quantify the random search quality, we compare Brownian search with Levy search based on long-tailed jump length distributions. We then compare these results with a search process combined of two different long-tailed jump length distributions. Moreover, we study the case of multiple targets located by a Levy searcher.}, language = {en} } @article{CaetanodeCarvalhoMetzleretal.2017, author = {Caetano, Daniel L. Z. and de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of periodic and random polyampholytes onto charged surfaces}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp04040g}, pages = {23397 -- 23413}, year = {2017}, abstract = {How different are the properties of critical adsorption of polyampholytes and polyelectrolytes onto charged surfaces? How important are the details of polyampholyte charge distribution on the onset of critical adsorption transition? What are the scaling relations governing the dependence of critical surface charge density on salt concentration in the surrounding solution? Here, we employ Metropolis Monte Carlo simulations and uncover the scaling relations for critical adsorption for quenched periodic and random charge distributions along the polyampholyte chains. We also evaluate and discuss the dependence of the adsorbed layer width on solution salinity and details of the charge distribution. We contrast our findings to the known results for polyelectrolyte adsorption onto oppositely charged surfaces, in particular, their dependence on electrolyte concentration.}, language = {en} } @article{MuenchKipfstuhlFreitagetal.2017, author = {Muench, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-11-2175-2017}, pages = {2175 -- 2188}, year = {2017}, abstract = {The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (greater than or similar to 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (<< 1 parts per thousand RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.}, language = {en} } @article{StarkenburgMartinYouakimetal.2017, author = {Starkenburg, Else and Martin, Nicolas and Youakim, Kris and Aguado, David S. and Allende Prieto, Carlos and Arentsen, Anke and Bernard, Edouard J. and Bonifacio, Piercarlo and Caffau, Elisabetta and Carlberg, Raymond G. and Cote, Patrick and Fouesneau, Morgan and Francois, Patrick and Franke, Oliver and Gonzalez Hernandez, Jonay I. and Gwyn, Stephen D. J. and Hill, Vanessa and Ibata, Rodrigo A. and Jablonka, Pascale and Longeard, Nicolas and McConnachie, Alan W. and Navarro, Julio F. and Sanchez-Janssen, Ruben and Tolstoy, Eline and Venn, Kim A.}, title = {The Pristine survey - I. Mining the Galaxy for the most metal-poor stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1068}, pages = {2587 -- 2604}, year = {2017}, abstract = {We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H\&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg(2) in the Galactic halo ranging from b similar to 30 degrees to similar to 78 degrees and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of similar to 0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H](SEGUE) < -3.0 stars among [Fe/H](Pristine) < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.}, language = {en} } @misc{ErraVelazquezRosenblum2017, author = {Erra, Ramon Guevara and Velazquez, Jose L. Perez and Rosenblum, Michael}, title = {Neural Synchronization from the Perspective of Non-linear Dynamics}, series = {Frontiers in computational neuroscience / Frontiers Research Foundation}, volume = {11}, journal = {Frontiers in computational neuroscience / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5188}, doi = {10.3389/fncom.2017.00098}, pages = {4}, year = {2017}, language = {en} } @article{AroraMawassSandigetal.2017, author = {Arora, Ashima and Mawass, Mohamad-Assaad and Sandig, Oliver and Luo, Chen and Uenal, Ahmet A. and Radu, Florin and Valencia, Sergio and Kronast, Florian}, title = {Spatially resolved investigation of all optical magnetization switching in TbFe alloys}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-09615-1}, pages = {9}, year = {2017}, abstract = {Optical control of magnetization using femtosecond laser without applying any external magnetic field offers the advantage of switching magnetic states at ultrashort time scales. Recently, all-optical helicity-dependent switching (AO-HDS) has drawn a significant attention for potential information and data storage device applications. In this work, we employ element and magnetization sensitive photoemission electron microscopy (PEEM) to investigate the role of heating in AO-HDS for thin films of the rare-earth transition-metal alloy TbFe. Spatially resolved measurements in a 3-5\&\#8201;\&\#956;m sized stationary laser spot demonstrate that AO-HDS is a local phenomenon in the vicinity of thermal demagnetization in a 'ring' shaped region. The efficiency of AO-HDS further depends on a local temperature profile around the demagnetized region and thermally activated domain wall motion. We also demonstrate that the thickness of the film determines the preferential switching direction for a particular helicity.}, language = {en} } @article{MorHerzogGolezetal.2017, author = {Mor, Selene and Herzog, Marc and Golez, Denis and Werner, Philipp and Eckstein, Martin and Katayama, Naoyuki and Nohara, Minoru and Takagi, Hide and Mizokawa, Takashi and Monney, Claude and Staehler, Julia}, title = {Ultrafast Electronic Band Gap Control in an Excitonic Insulator}, series = {Physical review letters}, volume = {119}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.119.086401}, pages = {11559 -- 11567}, year = {2017}, abstract = {We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta2NiSe5 investigated by time-and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of F-C = 0.2 mJ cm(-2), the band gap narrows transiently, while it is enhanced above FC. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta2NiSe5, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta2NiSe5 with light on the femtosecond time scale.}, language = {en} }