@inproceedings{OskinovaHamannFeldmeier2007, author = {Oskinova, Lida and Hamann, Wolf-Rainer and Feldmeier, Achim}, title = {X-raying clumped stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18133}, year = {2007}, abstract = {X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging Xray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if the wind clumps are radially compressed. In massive binaries the orbital variations of X-ray emission allow to probe the opacity of the stellar wind; results support the picture of strong wind clumping. In high-mass X-ray binaries, the stochastic X-ray variability and the extend of the stellar-wind part photoionized by X-rays provide further strong evidence that stellar winds consist of dense clumps.}, language = {en} } @inproceedings{OPUS4-1574, title = {Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007}, editor = {Hamann, Wolf-Rainer and Feldmeier, Achim and Oskinova, Lida}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-33-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13981}, pages = {254}, year = {2007}, abstract = {Stellar winds play an important role for the evolution of massive stars and their cosmic environment. Multiple lines of evidence, coming from spectroscopy, polarimetry, variability, stellar ejecta, and hydrodynamic modeling, suggest that stellar winds are non-stationary and inhomogeneous. This is referred to as 'wind clumping'. The urgent need to understand this phenomenon is boosted by its far-reaching implications. Most importantly, all techniques to derive empirical mass-loss rates are more or less corrupted by wind clumping. Consequently, mass-loss rates are extremely uncertain. Within their range of uncertainty, completely different scenarios for the evolution of massive stars are obtained. Settling these questions for Galactic OB, LBV and Wolf-Rayet stars is prerequisite to understanding stellar clusters and galaxies, or predicting the properties of first-generation stars. In order to develop a consistent picture and understanding of clumped stellar winds, an international workshop on 'Clumping in Hot Star Winds' was held in Potsdam, Germany, from 18. - 22. June 2007. About 60 participants, comprising almost all leading experts in the field, gathered for one week of extensive exchange and discussion. The Scientific Organizing Committee (SOC) included John Brown (Glasgow), Joseph Cassinelli (Madison), Paul Crowther (Sheffield), Alex Fullerton (Baltimore), Wolf-Rainer Hamann (Potsdam, chair), Anthony Moffat (Montreal), Stan Owocki (Newark), and Joachim Puls (Munich). These proceedings contain the invited and contributed talks presented at the workshop, and document the extensive discussions.}, language = {en} } @inproceedings{SanterZakrevskyy2013, author = {Santer, Svetlana and Zakrevskyy, Yuriy}, title = {Reversible light-controlled compaction of soft colloids by azobenzene containing surfactant}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {245}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2013}, language = {en} } @inproceedings{SchuhPruckerLomadzeetal.2012, author = {Schuh, Christian and Prucker, Oswald and Lomadze, Nino and Kopyshev, Alexey and Santer, Svetlana and Ruehe, Juergen}, title = {Nanogradient polymer brushes}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {243}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2012}, language = {en} } @inproceedings{TatischeffDeAngelisTavanietal.2018, author = {Tatischeff, V. and De Angelis, A. and Tavani, M. and Grenier, I. and Oberlack, U. and Hanlon, L. and Walter, R. and Argan, A. and von Ballmoos, P. and Bulgarelli, A. and Donnarumma, I. and Hernanz, Margarita and Kuvvetli, I. and Mallamaci, M. and Pearce, M. and Zdziarski, A. and Aboudan, A. and Ajello, M. and Ambrosi, G. and Bernard, D. and Bernardini, E. and Bonvicini, V. and Brogna, A. and Branchesi, M. and Budtz-Jorgensen, C. and Bykov, A. and Campana, R. and Cardillo, M. and Ciprini, S. and Coppi, P. and Cumani, P. and da Silva, R. M. Curado and De Martino, D. and Diehl, R. and Doro, M. and Fioretti, V. and Funk, S. and Ghisellini, G. and Giordano, F. and Grove, J. E. and Hamadache, C. and Hartmann, D. H. and Hayashida, M. and Isern, J. and Kanbach, G. and Kiener, J. and Knodlseder, J. and Labanti, C. and Laurent, P. and Leising, M. and Limousin, O. and Longo, F. and Mannheim, K. and Marisaldi, M. and Martinez, M. and Mazziotta, M. N. and McEnery, J. E. and Mereghetti, S. and Minervini, G. and Moiseev, A. and Morselli, A. and Nakazawa, K. and Orleanski, P. and Paredes, J. M. and Patricelli, B. and Peyre, J. and Piano, G. and Pohl, Martin and Rando, R. and Roncadelli, M. and Tavecchio, F. and Thompson, D. J. and Turolla, R. and Ulyanov, A. and Vacchi, A. and Wu, X. and Zoglauer, A.}, title = {The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s}, series = {Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray}, volume = {10699}, booktitle = {Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray}, editor = {DenHerder, JWA Nikzad}, publisher = {SPIE - The International Society for Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-1952-4}, issn = {0277-786X}, doi = {10.1117/12.2315151}, pages = {15}, year = {2018}, abstract = {e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.}, language = {en} }