@misc{Guehr2016, author = {G{\"u}hr, Markus}, title = {Ultrafast Soft X-ray Probing of Gas Phase Molecular Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97215}, year = {2016}, abstract = {The molecular ability to selectively and efficiently convert sunlight into other forms of energy like heat, bond change, or charge separation is truly remarkable. The decisive steps in these transformations often happen on a femtosecond timescale and require transitions among different electronic states that violate the Born-Oppenheimer approximation (BOA). Non-BOA transitions pose challenges to both theory and experiment. From a theoretical point of view, excited state dynamics and nonadiabatic transitions both are difficult problems (see Figure 1(a)). However, the theory on non-BOA dynamics has advanced significantly over the last two decades. Full dynamical simulations for molecules of the size of nucleobases have been possible for a couple of years and allow predictions of experimental observables like photoelectron energy or ion yield. The availability of these calculations for isolated molecules has spurred new experimental efforts to develop methods that are sufficiently different from all optical techniques. For determination of transient molecular structure, femtosecond X-ray diffraction and electron diffraction have been implemented on optically excited molecules.}, language = {en} } @phdthesis{Schroeder2016, author = {Schr{\"o}der, Henning}, title = {Ultrafast electron dynamics in Fe(CO)5 and Cr(CO)6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94589}, school = {Universit{\"a}t Potsdam}, pages = {v, 87}, year = {2016}, abstract = {In this thesis, the two prototype catalysts Fe(CO)₅ and Cr(CO)₆ are investigated with time-resolved photoelectron spectroscopy at a high harmonic setup. In both of these metal carbonyls, a UV photon can induce the dissociation of one or more ligands of the complex. The mechanism of the dissociation has been debated over the last decades. The electronic dynamics of the first dissociation occur on the femtosecond timescale. For the experiment, an existing high harmonic setup was moved to a new location, was extended, and characterized. The modified setup can induce dynamics in gas phase samples with photon energies of 1.55eV, 3.10eV, and 4.65eV. The valence electronic structure of the samples can be probed with photon energies between 20eV and 40eV. The temporal resolution is 111fs to 262fs, depending on the combination of the two photon energies. The electronically excited intermediates of the two complexes, as well as of the reaction product Fe(CO)₄, could be observed with photoelectron spectroscopy in the gas phase for the first time. However, photoelectron spectroscopy gives access only to the final ionic states. Corresponding calculations to simulate these spectra are still in development. The peak energies and their evolution in time with respect to the initiation pump pulse have been determined, these peaks have been assigned based on literature data. The spectra of the two complexes show clear differences. The dynamics have been interpreted with the assumption that the motion of peaks in the spectra relates to the movement of the wave packet in the multidimensional energy landscape. The results largely confirm existing models for the reaction pathways. In both metal carbonyls, this pathway involves a direct excitation of the wave packet to a metal-to-ligand charge transfer state and the subsequent crossing to a dissociative ligand field state. The coupling of the electronic dynamics to the nuclear dynamics could explain the slower dissociation in Fe(CO)₅ as compared to Cr(CO)₆.}, language = {en} } @misc{BarniskeOskinovaHamann2016, author = {Barniske, Andreas and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas (vol 486, pg 971, 2008)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {587}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/200809568e}, pages = {1}, year = {2016}, language = {en} } @article{BroseTelezhinskyPohl2016, author = {Brose, Robert and Telezhinsky, Igor O. and Pohl, Martin}, title = {Transport of magnetic turbulence in supernova remnants}, series = {Physical review letters}, volume = {593}, journal = {Physical review letters}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527345}, pages = {8}, year = {2016}, abstract = {Context. Supernova remnants are known as sources of Galactic cosmic rays for their nonthermal emission of radio waves, X-rays, and gamma rays. However, the observed soft broken power-law spectra are hard to reproduce within standard acceleration theory based on the assumption of Bohm diffusion and steady-state calculations. Aims. We point out that a time-dependent treatment of the acceleration process together with a self-consistent treatment of the scattering turbulence amplification is necessary. Methods. We numerically solve the coupled system of transport equations for cosmic rays and isotropic Alfvenic turbulence. The equations are coupled through the growth rate of turbulence determined by the cosmic-ray gradient and the spatial diffusion coefficient of cosmic rays determined by the energy density of the turbulence. The system is solved on a comoving expanding grid extending upstream for dozens of shock radii, allowing for the self-consistent study of cosmic-ray diffusion in the vicinity of their acceleration site. The transport equation for cosmic rays is solved in a test-particle approach. Results. We demonstrate that the system is typically not in a steady state. In fact, even after several thousand years of evolution, no equilibrium situation is reached. The resulting time-dependent particle spectra strongly differ from those derived assuming a steady state and Bohm diffusion. Our results indicate that proper accounting for the evolution of the scattering turbulence and hence the particle diffusion coefficient is crucial for the formation of the observed soft spectra. In any case, the need to continuously develop magnetic turbulence upstream of the shock introduces nonlinearity in addition to that imposed by cosmic-ray feedback.}, language = {en} } @article{Beta2016, author = {Beta, Carsten}, title = {To turn or not to turn?}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/5/051003}, pages = {1 -- 17}, year = {2016}, abstract = {Bacteria typically swim in straight runs, interruped by sudden turning events. In particular, some species are limited to a reversal in the swimming direction as the only turning maneuver at their disposal. In a recent article, Grossmann et al (2016 New J. Phys. 18 043009) introduce a theoretical framework to analyze the diffusive properties of active particles following this type of run-and-reverse pattern. Based on a stochastic clock model to mimic the regulatory pathway that triggers reversal events, they show that a run-and-reverse swimmer can optimize its diffusive spreading by tuning the reversal rate according to the level of rotational noise. With their approach, they open up promising new perspectives of how to incorporate the dynamics of intracellular signaling into coarse-grained active particle descriptions.}, language = {en} } @article{StolbovaSurovyatkinaBookhagenetal.2016, author = {Stolbova, Veronika and Surovyatkina, Elena and Bookhagen, Bodo and Kurths, J{\"u}rgen}, title = {Tipping elements of the Indian monsoon: Prediction of onset and withdrawal}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL068392}, pages = {3982 -- 3990}, year = {2016}, abstract = {Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation.}, language = {en} } @phdthesis{Daschewski2016, author = {Daschewski, Maxim}, title = {Thermophony in real gases}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98866}, school = {Universit{\"a}t Potsdam}, pages = {79}, year = {2016}, abstract = {A thermophone is an electrical device for sound generation. The advantages of thermophones over conventional sound transducers such as electromagnetic, electrostatic or piezoelectric transducers are their operational principle which does not require any moving parts, their resonance-free behavior, their simple construction and their low production costs. In this PhD thesis, a novel theoretical model of thermophonic sound generation in real gases has been developed. The model is experimentally validated in a frequency range from 2 kHz to 1 MHz by testing more then fifty thermophones of different materials, including Carbon nano-wires, Titanium, Indium-Tin-Oxide, different sizes and shapes for sound generation in gases such as air, argon, helium, oxygen, nitrogen and sulfur hexafluoride. Unlike previous approaches, the presented model can be applied to different kinds of thermophones and various gases, taking into account the thermodynamic properties of thermophone materials and of adjacent gases, degrees of freedom and the volume occupied by the gas atoms and molecules, as well as sound attenuation effects, the shape and size of the thermophone surface and the reduction of the generated acoustic power due to photonic emission. As a result, the model features better prediction accuracy than the existing models by a factor up to 100. Moreover, the new model explains previous experimental findings on thermophones which can not be explained with the existing models. The acoustic properties of the thermophones have been tested in several gases using unique, highly precise experimental setups comprising a Laser-Doppler-Vibrometer combined with a thin polyethylene film which acts as a broadband and resonance-free sound-pressure detector. Several outstanding properties of the thermophones have been demonstrated for the first time, including the ability to generate arbitrarily shaped acoustic signals, a greater acoustic efficiency compared to conventional piezoelectric and electrostatic airborne ultrasound transducers, and applicability as powerful and tunable sound sources with a bandwidth up to the megahertz range and beyond. Additionally, new applications of thermophones such as the study of physical properties of gases, the thermo-acoustic gas spectroscopy, broad-band characterization of transfer functions of sound and ultrasound detection systems, and applications in non-destructive materials testing are discussed and experimentally demonstrated.}, language = {en} } @article{QiuWirgesGerhard2016, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4954263}, pages = {1687 -- 1697}, year = {2016}, abstract = {The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets. Ferroelectrets (sometimes also called piezoelectrets) are relatively new members of the family of piezo-, pyro-, and ferroelectric materials.1-5 As their name indicates, ferroelectrets are space-charge electrets that show ferroic behavior. They are non-uniform electret materials or materials systems with electrically charged internal cavities. As space-charge electrets, ferroelectrets usually do not contain any molecular dipoles. However, the cavities inside the material can be turned into macroscopic dipoles through a series of micro-plasma discharges at high electric fields, so-called dielectric barrier discharges (DBDs).6-8 The gas inside the cavities is ionized when the internal electric field exceeds the threshold for electrical breakdown, generating charges of both polarities.9 The positive and negative charges travel in opposite directions, and are eventually trapped at the internal top and bottom surfaces of the cavities, respectively. After charging, the cavities may be regarded as macroscopic dipoles that can be switched by reversing the applied voltage. An electric-polarization-vs.-electric-field (P(E)) hysteresis is considered as an essential criterion for ferroelectricity. P(E)-hysteresis curves are usually characterized by the spontaneous polarization, the coercive field, and the remanent polarization. Recently, we have demonstrated P(E)-hysteresis loops on two different types of ferroelectrets, namely, cellular polypropylene ferroelectrets and tubular-channel fluoroethylene-polypropylene copolymer ferroelectrets.10,11 The P(E)-hysteresis loops not only prove the ferroic behavior of ferroelectrets, but also allow us to determine such parameters as the coercive field and the remanent polarization. It is widely accepted that Paschen breakdown is the underlying mechanism for the inception of DBDs in ferroelectrets.12-14 On this basis, the charging behavior and the resulting piezoelectricity of ferroelectrets in different gases at various pressures have been studied.15-17 Paschen's law describes the conditions for electrical breakdown in a gas at a constant temperature (usually room temperature), and it needs to be modified for gas breakdown at other temperatures. The temperature stability of the piezoelectricity in ferroelectrets after charging at elevated temperatures was investigated by several researchers.18-21 Recently, a preliminary report about the effects of the charging temperature on the hysteresis loops in ferroelectrets has been presented.22 In this letter, the influence of the gas temperature on the charging of ferroelectret systems is investigated in more detail by means of quasi-ferroelectric hysteresis-loop measurements. Teflon™ fluoroethylenepropylene (FEP) copolymer samples with tubular channels were prepared via thermal lamination as described previously.23 To this end, two FEP films with a thickness of 50 \&\#956;m each were laminated at 300 ° C around a 100 \&\#956;m thick polytetrafluoroethylene (PTFE) template (total area 35 mm × 45 mm) that contains parallel rectangular openings (area 1.5 mm × 40 mm each). After lamination, the template was removed, which results in an FEP film system with open tubular channels. The samples were metallized on both surfaces with aluminum electrodes of 20 mm diameter. P(E)-hysteresis loops were obtained with a modified Sawyer-Tower (ST) circuit.10,11 A high-voltage (HV) capacitor C1 (3 nF) and a large standard capacitor Cm (1 \&\#956;F) were connected in series with the sample. A bipolar sinusoidal voltage with a frequency of 10 mHz was applied from an HV power supply (FUG HCB 7-6500) controlled by an arbitrary-waveform generator (HP 33120a). The voltage Vout on Cm is measured by means of an electrometer (HP 3458a), and the charge flowing through the circuit is determined as Q(t)=CmVout(t) . The experiments were carried out at isothermal conditions in a Novocontrol® Quatro cryosystem. With the modified ST circuit, Q-V loops have been measured on a tubular-channel FEP ferroelectret system at different temperatures. The sample capacitance of about 34.5 pF is determined by a linear fit of the initial part of the Q-V curve recorded at 20 °C , where the voltage has been raised up from zero on a fresh sample. The hysteresis loops are obtained from the Q-V curves by subtracting the contribution that results from charging of the sample capacitance.10 Figure 1 shows the hysteresis loops of the sample at \&\#8722;100, 0, and +100 ° C, respectively. According to previous theoretical and experimental studies,24,25 the length of each of the horizontal sides of the parallelogram-like hysteresis loops is given by 2Vth where Vth is the threshold voltage. As the charging temperature decreases, the hysteresis loop becomes wider and less high, i.e., the threshold voltage increases, while the polarization at maximum voltage decreases.}, language = {en} } @article{RipepiMarconiMorettietal.2016, author = {Ripepi, Vincenzo and Marconi, M. and Moretti, M. I. and Clementini, Gisella and Cioni, Maria-Rosa L. and de Grijs, Richard and Emerson, J. P. and Groenewegen, M. A. T. and Ivanov, V. D. and Piatti, A. E.}, title = {THE VMC SURVEY. XIX. CLASSICAL CEPHEIDS IN THE SMALL MAGELLANIC CLOUD}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {224}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/0067-0049/224/2/21}, pages = {199 -- 229}, year = {2016}, abstract = {The "VISTA near-infrared YJK(s) survey of the Magellanic Clouds System" (VMC) is collecting deep K-s-band time-series photometry of pulsating variable stars hosted by the two Magellanic Clouds and their connecting Bridge. In this paper, we present Y, J, K-s light curves for a sample of 4172 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with literature V values, allowed us to construct a variety of period-luminosity (PL), period-luminosity-color (PLC), and period-Wesenheit (PW) relationships, which are valid for Fundamental (F), First Overtone (FO), and Second Overtone (SO) pulsators. The relations involving the V, J, K-s bands are in agreement with their counterparts in the literature. As for the Y band, to our knowledge, we present the first CC PL, PW, and PLC relations ever derived using this filter. We also present the first near-infrared PL, PW, and PLC relations for SO pulsators to date. We used PW(V, K-s) to estimate the relative SMC-LMC distance and, in turn, the absolute distance to the SMC. For the former quantity, we find a value of Delta mu = 0.55. +/- 0.04 mag, which is in rather good agreement with other evaluations based on CCs, but significantly larger than the results obtained from older population II distance indicators. This discrepancy might be due to the different geometric distributions of young and old tracers in both Clouds. As for the absolute distance to the SMC, our best estimates are mu(SMC) = 19.01 +/- 0.05 mag and mu(SMC) = 19.04 +/- 0.06 mag, based on two distance measurements to the LMC which rely on accurate CC and eclipsing Cepheid binary data, respectively.}, language = {en} } @article{PiattiIvanovRubeleetal.2016, author = {Piatti, Andres E. and Ivanov, Valentin D. and Rubele, Stefano and Marconi, Marcella and Ripepi, Vincenzo and Cioni, Maria-Rosa L. and Oliveira, Joana M. and Bekki, Kenji}, title = {The VMC Survey - XXI. New star cluster candidates discovered from infrared photometry in the Small Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {460}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1000}, pages = {383 -- 395}, year = {2016}, language = {en} } @article{MorettiClementiniMarconietal.2016, author = {Moretti, M. I. and Clementini, Gisella and Marconi, V. Ripepi M. and Rubele, S. and Cioni, Maria-Rosa L. and Muraveva, T. and Groenewegen, M. A. T. and Cross, N. J. G. and Ivanov, V. D. and Piatti, A. E. and de Grijs, Richard}, title = {The VMC survey - XX. Identification of new Cepheids in the Small Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {459}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw716}, pages = {1687 -- 1697}, year = {2016}, abstract = {We present K-s-band light curves for 299 Cepheids in the Small Magellanic Cloud (SMC) of which 288 are new discoveries that we have identified using multi-epoch near-infrared photometry obtained by the VISTA survey of the Magellanic Clouds system (VMC). The new Cepheids have periods in the range from 0.34 to 9.1 d and cover the magnitude interval 12.9 <= currency sign < K-s > <= currency sign 17.6 mag. Our method was developed using variable stars previously identified by the optical microlensing survey OGLE. We focus on searching new Cepheids in external regions of the SMC for which complete VMC K-s-band observations are available and no comprehensive identification of different types of variable stars from other surveys exists yet.}, language = {en} } @article{XiongStolleLuehr2016, author = {Xiong, Chao and Stolle, Claudia and L{\"u}hr, Hermann}, title = {The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities}, series = {Space Weather: The International Journal of Research and Applications}, volume = {14}, journal = {Space Weather: The International Journal of Research and Applications}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1002/2016SW001439}, pages = {563 -- 577}, year = {2016}, abstract = {In this study we investigated conditions for loss of GPS signals observed by the Swarm satellites during a 2 year period, from December 2013 to November 2015. Our result shows that the Swarm satellites encountered most of the total loss of GPS signal at the ionization anomaly crests, between +/- 5 degrees and +/- 20 degrees magnetic latitude, forming two bands along the magnetic equator, and these low-latitude events mainly appear around postsunset hours from 19: 00 to 22: 00 local time. By further checking the in situ electron density measurements of Swarm, we found that practically, all the total loss of GPS signal events at low latitudes are related to equatorial plasma irregularities (EPIs) that show absolute density depletions larger than 10 x 10(11) m(-3); then, the Swarm satellites encountered for up to 95\% loss of GPS signal for at least one channel and up to 45\% tracked less than four GPS satellites (making precise orbit determination impossible). For those EPIs with density depletions less than 10 x 10(11) m(-3), the chance of tracked GPS signals less than four reduces to only 1.0\%. Swarm also observed total loss of all GPS signal at high latitudes, mainly around local noon, and these events are related to large spatial density gradients due to polar patches or increased geomagnetic/auroral activities. We further found that the loss of GPS signals were less frequent after appropriate settings of the Swarm GPS receivers had been updated. However, the more recent period of the mission, e.g., after the GPS receiver settings have been updated, also coincides with less severe electron density depletions due to the declining solar cycle, making GPS loss events less likely. We conclude that both lower electron density gradients and appropriate GPS receiver settings reduce the probability for Swarm satellites loss of GPS signals.}, language = {en} } @article{StolterfohtArminPhilippaetal.2016, author = {Stolterfoht, Martin and Armin, Ardalan and Philippa, Bronson and Neher, Dieter}, title = {The Role of Space Charge Effects on the Competition between Recombination and Extraction in Solar Cells with Low-Mobility Photoactive Layers}, series = {The journal of physical chemistry letters}, volume = {7}, journal = {The journal of physical chemistry letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.6b02106}, pages = {4716 -- 4721}, year = {2016}, abstract = {The competition between charge extraction and nongeminate recombination critically determines the current-voltage characteristics of organic solar cells (OSCs) and their fill factor. As a measure of this competition, several figures of merit (FOMs) have been put forward; however, the impact of space charge effects has been either neglected, or not specifically addressed. Here we revisit recently reported FOMs and discuss the role of space charge effects on the interplay between recombination and extraction. We find that space charge effects are the primary cause for the onset of recombination in so-called non-Langevin systems, which also depends on the slower carrier mobility and recombination coefficient. The conclusions are supported with numerical calculations and experimental results of 25 different donor/acceptor OSCs with different charge transport parameters, active layer thicknesses or composition ratios. The findings represent a conclusive understanding of bimolecular recombination for drift dominated photocurrents and allow one to minimize these losses for given device parameters.}, language = {en} } @phdthesis{Ruppert2016, author = {Ruppert, Jan}, title = {The Low-Mass Young Stellar Content in the Extended Environment of the Galactic Starburst Region NGC3603}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2016}, language = {en} } @article{LenskeWagnerWirthetal.2016, author = {Lenske, Gerlinde and Wagner, Wolfgang and Wirth, Joachim and Thillmann, Hubertina and Cauet, Eva and Liepertz, Sven and Leutner, Detlev}, title = {The importance of pedagogical knowledge for classroom management and for and for students' achievement}, series = {Zeitschrift f{\~A}¼r Erziehungswissenschaft}, volume = {19}, journal = {Zeitschrift f{\~A}¼r Erziehungswissenschaft}, publisher = {Springer}, address = {Wiesbaden}, issn = {1434-663X}, doi = {10.1007/s11618-015-0659-x}, pages = {211 -- 233}, year = {2016}, abstract = {Im Rahmen der vorliegenden Studie wurde untersucht, ob das p{\"a}dagogisch-psychologische Wissen von Lehrkr{\"a}ften die prozessuale Qualit{\"a}t des Physikunterrichts mit Blick auf die Klassenf{\"u}hrung und den Lernzuwachs der Sch{\"u}lerinnen und Sch{\"u}ler beeinflusst. Das p{\"a}dagogisch-psychologische Professionswissen, konzeptualisiert als ein f{\"a}cher{\"u}bergreifendes, handlungsleitendes Wissen {\"u}ber Strategien und Mittel zur Unterrichtsgestaltung, wurde {\"u}ber einen Paper-Pencil-Test, bestehend aus einer Skala zum deklarativen und einer Skala zum konditional-prozeduralen Wissen erhoben (Lenske et al. 2015). Als ein grundlegendes Merkmal prozessualer Unterrichtsqualit{\"a}t wurde die Klassenf{\"u}hrung anhand von Videoratings zu zwei Messzeitpunkten (zwei Unterrichtsstunden) erfasst. Der Lernzuwachs der Sch{\"u}lerinnen und Sch{\"u}ler wurde {\"u}ber standardisierte Fachwissenstests im Pr{\"a}-Post-Testdesign gemessen. Die Stichprobe umfasst 34 Gymnasiallehrkr{\"a}fte und deren Sch{\"u}lerinnen und Sch{\"u}ler (N = 993). Auf Basis eines Complex-Bootstrap-Mediations-Modells zeigte sich, dass das p{\"a}dagogisch-psychologische Professionswissen {\"u}ber die Klassenf{\"u}hrung vermittelt den Lernzuwachs der Sch{\"u}ler und Sch{\"u}lerinnen positiv beeinflusst. In the present study it was investigated whether the pedagogical knowledge of teachers has an influence on the process quality of physics instruction and on the learning achievement of students as well. Pedagogical knowledge, conceptualized as knowledge about strategies in classroom instruction that is domain-general and relevant for teaching behaviors, was measured using a paper-and-pencil test with two scales: one scale on declarative knowledge, the other on conditional-procedural knowledge (Lenske et al. 2015). As a basic aspect of the process quality of classroom instruction, classroom management was assessed using video ratings of two lessons from each participating teacher. Students' learning achievement was assessed using standardized domain-specific knowledge tests in a pretest-posttest design. The sample included 34 teachers from higher-track secondary schools and their students (N = 993). A complex bootstrapping mediation model shows that teachers' pedagogical knowledge, mediated by their classroom management, has a positive effect on their students' learning achievement.}, language = {de} } @article{HubrigKholtyginIlyinetal.2016, author = {Hubrig, Swetlana and Kholtygin, A. and Ilyin, Ilya and Sch{\"o}ller, M. and Oskinova, Lida}, title = {THE FIRST SPECTROPOLARIMETRIC MONITORING OF THE PECULIAR O4 Ief SUPERGIANT zeta PUPPIS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {822}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/822/2/104}, pages = {7}, year = {2016}, abstract = {The origin of the magnetic field in massive O-type stars is still under debate. To model the physical processes responsible for the generation of O star magnetic fields, it is important to understand whether correlations between the presence of a magnetic field and stellar evolutionary state, rotation velocity, kinematical status, and surface composition can be identified. The O4 Ief supergiant zeta Pup is a fast rotator and a runaway star, which may be a product of a past binary interaction, possibly having had an encounter with the cluster Trumper 10 some 2 Myr ago. The currently available observational material suggests that certain observed phenomena in this star may be related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Pup with FORS 2 mounted on the 8 m Antu telescope of the Very Large Telescope to investigate if a magnetic field is indeed present in this star. We show that many spectral lines are highly variable and probably vary with the recently detected period of 1.78 day. No magnetic field is detected in zeta Pup, as no magnetic field measurement has a significance level higher than 2.4 sigma. Still, we studied the probability of a single sinusoidal explaining the variation of the longitudinal magnetic field measurements.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {The effect of entanglement in gravitational photon-photon scattering}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {115}, journal = {epl : a letters journal exploring the frontiers of physics}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/115/51002}, pages = {S12 -- S13}, year = {2016}, abstract = {The differential cross-section for gravitational photon-photon scattering calculated in perturbative quantum gravity is shown to depend on the degree of polarization entanglement of the two photons. The interaction between photons in the symmetric Bell state is stronger than between not entangled photons. In contrast, the interaction between photons in the anti-symmetric Bell state is weaker than between not entangled photons. The results are interpreted in terms of quantum interference, and it is shown how they fit into the idea of distance-dependent forces. Copyright (C) EPLA, 2016}, language = {en} } @article{OttoJaumannKrohnetal.2016, author = {Otto, Katharina Alexandra and Jaumann, R. and Krohn, K. and Spahn, Frank and Raymond, C. A. and Russell, C. T.}, title = {The Coriolis effect on mass wasting during the Rheasilvia impact on asteroid Vesta}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071539}, pages = {12340 -- 12347}, year = {2016}, abstract = {We investigate the influence of the Coriolis force on mass motion related to the Rheasilvia impact on asteroid Vesta. Observations by the NASA Dawn mission revealed a pattern of curved radial ridges, which are related to Coriolis-deflected mass-wasting during the initial modification stage of the crater. Utilizing the projected curvature of the mass-wasting trajectories, we developed a method that enabled investigation of the initial mass wasting of the Rheasilvia impact by observational means. We demonstrate that the Coriolis force can strongly affect the crater formation processes on rapidly rotating objects, and we derive the material's velocities (28.9 ± 22.5 m/s), viscosities (1.5-9.0 × 106 Pa s) and coefficients of friction (0.02-0.81) during the impact modification stage. The duration of the impact modification stage could be estimated to (1.1 ± 0.5) h. By analyzing the velocity distribution with respect to the topography, we deduce that the Rheasilvia impactor hit a heterogeneous target and that the initial crater walls were significantly steeper during the modification stage.}, language = {en} } @article{RichardsonShenarRoyLoubieretal.2016, author = {Richardson, Noel D. and Shenar, Tomer and Roy-Loubier, Olivier and Schaefer, Gail and Moffat, Anthony F. J. and St-Louis, Nicole and Gies, Douglas R. and Farrington, Chris and Hill, Grant M. and Williams, Peredur M. and Gordon, Kathryn and Pablo, Herbert and Ramiaramanantsoa, Tahina}, title = {The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138}, series = {Monthly notices of the Royal Astronomical Society}, volume = {461}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1585}, pages = {4115 -- 4124}, year = {2016}, abstract = {We report on interferometric observations with the CHARAArray of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR, 137 = 0.59 +/- 0.04; fWR, 138 = 0.67 +/- 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edgeon. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.}, language = {en} } @article{ArcherBenbowBirdetal.2016, author = {Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Huetten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Yusef-Zadeh, F.}, title = {TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/129}, pages = {162 -- 167}, year = {2016}, abstract = {The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S.. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and. (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.}, language = {en} }