@phdthesis{Thomas2022, author = {Thomas, Timon}, title = {Cosmic-ray hydrodynamics: theory, numerics, applications}, doi = {10.25932/publishup-56384}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563843}, school = {Universit{\"a}t Potsdam}, pages = {334}, year = {2022}, abstract = {Cosmic rays (CRs) are a ubiquitous and an important component of astrophysical environments such as the interstellar medium (ISM) and intracluster medium (ICM). Their plasma physical interactions with electromagnetic fields strongly influence their transport properties. Effective models which incorporate the microphysics of CR transport are needed to study the effects of CRs on their surrounding macrophysical media. Developing such models is challenging because of the conceptional, length-scale, and time-scale separation between the microscales of plasma physics and the macroscales of the environment. Hydrodynamical theories of CR transport achieve this by capturing the evolution of CR population in terms of statistical moments. In the well-established one-moment hydrodynamical model for CR transport, the dynamics of the entire CR population are described by a single statistical quantity such as the commonly used CR energy density. In this work, I develop a new hydrodynamical two-moment theory for CR transport that expands the well-established hydrodynamical model by including the CR energy flux as a second independent hydrodynamical quantity. I detail how this model accounts for the interaction between CRs and gyroresonant Alfv{\´e}n waves. The small-scale magnetic fields associated with these Alfv{\´e}n waves scatter CRs which fundamentally alters CR transport along large-scale magnetic field lines. This leads to the effects of CR streaming and diffusion which are both captured within the presented hydrodynamical theory. I use an Eddington-like approximation to close the hydrodynamical equations and investigate the accuracy of this closure-relation by comparing it to high-order approximations of CR transport. In addition, I develop a finite-volume scheme for the new hydrodynamical model and adapt it to the moving-mesh code Arepo. This scheme is applied using a simulation of a CR-driven galactic wind. I investigate how CRs launch the wind and perform a statistical analysis of CR transport properties inside the simulated circumgalactic medium (CGM). I show that the new hydrodynamical model can be used to explain the morphological appearance of a particular type of radio filamentary structures found inside the central molecular zone (CMZ). I argue that these harp-like features are synchrotron-radiating CRs which are injected into braided magnetic field lines by a point-like source such as a stellar wind of a massive star or a pulsar. Lastly, I present the finite-volume code Blinc that uses adaptive mesh refinement (AMR) techniques to perform simulations of radiation and magnetohydrodynamics (MHD). The mesh of Blinc is block-structured and represented in computer memory using a graph-based approach. I describe the implementation of the mesh graph and how a diffusion process is employed to achieve load balancing in parallel computing environments. Various test problems are used to verify the accuracy and robustness of the employed numerical algorithms.}, language = {en} } @phdthesis{Holler2014, author = {Holler, Markus}, title = {Photon reconstruction for the H.E.S.S. 28 m telescope and analysis of Crab Nebula and galactic centre observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72099}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {In the presented thesis, the most advanced photon reconstruction technique of ground-based γ-ray astronomy is adapted to the H.E.S.S. 28 m telescope. The method is based on a semi-analytical model of electromagnetic particle showers in the atmosphere. The properties of cosmic γ-rays are reconstructed by comparing the camera image of the telescope with the Cherenkov emission that is expected from the shower model. To suppress the dominant background from charged cosmic rays, events are selected based on several criteria. The performance of the analysis is evaluated with simulated events. The method is then applied to two sources that are known to emit γ-rays. The first of these is the Crab Nebula, the standard candle of ground-based γ-ray astronomy. The results of this source confirm the expected performance of the reconstruction method, where the much lower energy threshold compared to H.E.S.S. I is of particular importance. A second analysis is performed on the region around the Galactic Centre. The analysis results emphasise the capabilities of the new telescope to measure γ-rays in an energy range that is interesting for both theoretical and experimental astrophysics. The presented analysis features the lowest energy threshold that has ever been reached in ground-based γ-ray astronomy, opening a new window to the precise measurement of the physical properties of time-variable sources at energies of several tens of GeV.}, language = {en} }