@article{WangFruebingWirgesetal.2010, author = {Wang, Feipeng and Fr{\"u}bing, Peter and Wirges, Werner and Gerhard, Reimund and Wegener, Michael}, title = {Enhanced Polarization in Melt-quenched and Stretched Poly(vinylidene Fluoride-Hexafluoropropylene) Films}, issn = {1070-9878}, doi = {10.1109/TDEI.2010.5539679}, year = {2010}, abstract = {beta-phase poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymer films were prepared by uniaxially stretching solution-cast or melt-quenched samples. Different preparation routes lead to different amounts of the crystalline alpha and beta phases in the films, as detected by means of Fourier-transform infrared spectroscopy and X-ray diffractometry. The beta phase is significantly enhanced in melt-quenched and stretched films in comparison to solution-cast and stretched films. This is particularly true for copolymer samples with higher HFP content. The beta- phase enhancement is also observed in ferroelectric-hysteresis experiments where a rather high polarization of 58 mC/ m(2) was found on melt-quenched and stretched samples after poling at electric fields of 140 MV/m. After poling at 160 MV/m, one of these samples exhibited a piezoelectric d(33) coefficient as high as 21 pC/N. An electric-field-induced partial transition from the alpha to the beta phase was also observed on the melt-quenched and stretched samples. This effect leads to a further increase in the applications-relevant dipole polarization. Uniaxially stretched ferroelectric- polymer films are highly anisotropic. Dielectric resonance spectroscopy reveals a strong increase of the transverse piezoelectric d(32) coefficient and a strong decrease of the transverse elastic modulus c(32) upon heating from 20 to 50 degrees C.}, language = {en} }