@article{JoulainBenAbdallahChapuisetal.2014, author = {Joulain, Karl and Ben-Abdallah, Philippe and Chapuis, Pierre-Olivier and De Wilde, Y. and Babuty, A. and Henkel, Carsten}, title = {Strong tip-sample coupling in thermal radiation scanning tunneling microscopy}, series = {Journal of quantitative spectroscopy \& radiative transfer}, volume = {136}, journal = {Journal of quantitative spectroscopy \& radiative transfer}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-4073}, doi = {10.1016/j.jqsrt.2013.12.006}, pages = {1 -- 15}, year = {2014}, language = {en} } @article{BenAbdallahMessinaBiehsetal.2013, author = {Ben-Abdallah, Philippe and Messina, Riccardo and Biehs, Svend-Age and Tschikin, Maria and Joulain, Karl and Henkel, Carsten}, title = {Heat superdiffusion in plasmonic nanostructure networks}, series = {Physical review letters}, volume = {111}, journal = {Physical review letters}, number = {17}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.111.174301}, pages = {5}, year = {2013}, abstract = {The heat transport mediated by near-field interactions in networks of plasmonic nanostructures is shown to be analogous to a generalized random walk process. The existence of superdiffusive regimes is demonstrated both in linear ordered chains and in three-dimensional random networks by analyzing the asymptotic behavior of the corresponding probability distribution function. We show that the spread of heat in these networks is described by a type of Levy flight. The presence of such anomalous heat-transport regimes in plasmonic networks opens the way to the design of a new generation of composite materials able to transport heat faster than the normal diffusion process in solids.}, language = {en} }