@misc{Baermann2006, type = {Master Thesis}, author = {B{\"a}rmann, Daniel}, title = {Aufz{\"a}hlen von DNA-Codes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10264}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {In dieser Arbeit wird ein Modell zum Aufz{\"a}hlen von DNA-Codes entwickelt. Indem eine Ordnung auf der Menge aller DNA-Codew{\"o}rter eingef{\"u}hrt und auf die Menge aller Codes erweitert wird, erlaubt das Modell das Auffinden von DNA-Codes mit bestimmten Eigenschaften, wie {\"U}berlappungsfreiheit, Konformit{\"a}t, Kommafreiheit, Stickyfreiheit, {\"U}berhangfreiheit, Teilwortkonformit{\"a}t und anderer bez{\"u}glich einer gegebenen Involution auf der Menge der Codew{\"o}rter. Ein auf Grundlage des geschaffenen Modells entstandenes Werkzeug erlaubt das Suchen von Codes mit beliebigen Kombinationen von Codeeigenschaften. Ein weiterer wesentlicher Bestandteil dieser Arbeit ist die Untersuchung der Optimalit{\"a}t von DNA-Codes bez{\"u}glich ihrer Informationsrate sowie das Finden solider DNA-Codes.}, subject = {DNS}, language = {de} } @phdthesis{SchulzHanke2023, author = {Schulz-Hanke, Christian}, title = {BCH Codes mit kombinierter Korrektur und Erkennung}, doi = {10.25932/publishup-61794}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617943}, school = {Universit{\"a}t Potsdam}, pages = {ii, 191}, year = {2023}, abstract = {BCH Codes mit kombinierter Korrektur und Erkennung In dieser Arbeit wird auf Grundlage des BCH Codes untersucht, wie eine Fehlerkorrektur mit einer Erkennung h{\"o}herer Fehleranzahlen kombiniert werden kann. Mit dem Verfahren der 1-Bit Korrektur mit zus{\"a}tzlicher Erkennung h{\"o}herer Fehler wurde ein Ansatz entwickelt, welcher die Erkennung zus{\"a}tzlicher Fehler durch das parallele L{\"o}sen einfacher Gleichungen der Form s_x = s_1^x durchf{\"u}hrt. Die Anzahl dieser Gleichungen ist linear zu der Anzahl der zu {\"u}berpr{\"u}fenden h{\"o}heren Fehler. In dieser Arbeit wurde zus{\"a}tzlich f{\"u}r bis zu 4-Bit Korrekturen mit zus{\"a}tzlicher Erkennung h{\"o}herer Fehler ein weiterer allgemeiner Ansatz vorgestellt. Dabei werden parallel f{\"u}r alle korrigierbaren Fehleranzahlen spekulative Fehlerkorrekturen durchgef{\"u}hrt. Aus den bestimmten Fehlerstellen werden spekulative Syndromkomponenten erzeugt, durch welche die Fehlerstellen best{\"a}tigt und h{\"o}here erkennbare Fehleranzahlen ausgeschlossen werden k{\"o}nnen. Die vorgestellten Ans{\"a}tze unterscheiden sich von dem in entwickelten Ansatz, bei welchem die Anzahl der Fehlerstellen durch die Berechnung von Determinanten in absteigender Reihenfolge berechnet wird, bis die erste Determinante 0 bildet. Bei dem bekannten Verfahren ist durch die Berechnung der Determinanten eine faktorielle Anzahl an Berechnungen in Relation zu der Anzahl zu {\"u}berpr{\"u}fender Fehler durchzuf{\"u}hren. Im Vergleich zu dem bekannten sequentiellen Verfahrens nach Berlekamp Massey besitzen die Berechnungen im vorgestellten Ansatz simple Gleichungen und k{\"o}nnen parallel durchgef{\"u}hrt werden.Bei dem bekannten Verfahren zur parallelen Korrektur von 4-Bit Fehlern ist eine Gleichung vierten Grades im GF(2^m) zu l{\"o}sen. Dies erfolgt, indem eine Hilfsgleichung dritten Grades und vier Gleichungen zweiten Grades parallel gel{\"o}st werden. In der vorliegenden Arbeit wurde gezeigt, dass sich eine Gleichung zweiten Grades einsparen l{\"a}sst, wodurch sich eine Vereinfachung der Hardware bei einer parallelen Realisierung der 4-Bit Korrektur ergibt. Die erzielten Ergebnisse wurden durch umfangreiche Simulationen in Software und Hardwareimplementierungen {\"u}berpr{\"u}ft.}, language = {de} }