@article{BesnardSchaubTompitsetal.2003, author = {Besnard, Philippe and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {Paraconsistent reasoning via quantified boolean formulas : Part II: Circumscribing inconsistent theories}, isbn = {3-540- 409494-5}, year = {2003}, language = {en} } @article{DelgrandeSchaubTompits2003, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans}, title = {A framework for compiling preferences in logic programs}, year = {2003}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {Reasoning credulously and skeptically within a single extension}, year = {2003}, language = {en} } @article{Linke2003, author = {Linke, Thomas}, title = {Suitable graphs for answer set programming}, issn = {1613-0073}, year = {2003}, language = {en} } @article{KonczakLinkeSchaub2003, author = {Konczak, Kathrin and Linke, Thomas and Schaub, Torsten H.}, title = {Graphs and colorings for answer set programming : abridged report}, issn = {1613-0073}, year = {2003}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {On the relation between Reiter{\"i}s default logic and its (major) variants}, isbn = {3-540- 409494-5}, year = {2003}, language = {en} } @article{BesnardMercerSchaub2003, author = {Besnard, Philippe and Mercer, Robert E. and Schaub, Torsten H.}, title = {Optimality theory throught default logic}, isbn = {3-540-20059-2}, year = {2003}, language = {en} } @article{KonczakSchaubLinke2003, author = {Konczak, Kathrin and Schaub, Torsten H. and Linke, Thomas}, title = {Graphs and colorings for answer set programming with prefernces : preliminary report}, issn = {1613-0073}, year = {2003}, language = {en} } @article{DelgrandeGharibMerceretal.2003, author = {Delgrande, James Patrick and Gharib, Mona and Mercer, Robert E. and Risch, V. and Schaub, Torsten H.}, title = {Lukaszewicz-style answer set programming : a preliminary report}, issn = {1613-0073}, year = {2003}, language = {en} } @article{Linke2003, author = {Linke, Thomas}, title = {Using nested logic programs for answer set programming}, issn = {1613-0073}, year = {2003}, language = {en} } @article{SchaubWang2003, author = {Schaub, Torsten H. and Wang, Kewen}, title = {A semantic framework for prefernce handling in answer set programming}, year = {2003}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {A concictency-based paradigm for belief change}, issn = {0004-3702}, year = {2003}, language = {en} } @article{Schaub2003, author = {Schaub, Torsten H.}, title = {Antwortmengenprogrammierung}, year = {2003}, language = {de} } @article{KonczakSchaubLinke2003, author = {Konczak, Kathrin and Schaub, Torsten H. and Linke, Thomas}, title = {Graphs and colorings for answer set programming with preferences}, issn = {0169-2968}, year = {2003}, abstract = {The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one}, language = {en} } @article{FloeterNicolasSchaubetal.2003, author = {Fl{\"o}ter, Andr{\´e} and Nicolas, Jacques and Schaub, Torsten H. and Selbig, Joachim}, title = {Threshold extraction in metabolite concentration data}, year = {2003}, language = {en} } @article{LanfermannSchnorSeidel2003, author = {Lanfermann, Gerd and Schnor, Bettina and Seidel, Edward}, title = {Characterizing Grids}, isbn = {1-4020-7418-2}, year = {2003}, abstract = {We present a new data model approach to describe the various objects that either represent the Grid infrastructure or make use of it. The data model is based on the experiences and experiments conducted in heterogeneous Grid environments. While very sophisticated data models exist to describe and characterize e.g. compute capacities or web services, we will show that a general description, which combines {em all} of these aspects, is needed to give an adequate representation of objects on a Grid. The Grid Object Description Language (GODsL)} is a generic and extensible approach to unify the various aspects that an object on a Grid can have. GODsL provides the content for the XML based communication in Grid migration scenarios, carried out in the GridLab project. We describe the data model architecture on a general level and focus on the Grid application scenarios.}, language = {en} } @article{FeiderSchnorDramlitsch2003, author = {Feider, Henryk and Schnor, Bettina and Dramlitsch, Thomas}, title = {Gridmake : the missing link for compilation in the Grid}, year = {2003}, abstract = {In order to take full advantage of Grid environments, applications need to be able to run on various heterogeneous platforms. Distributed runs across several clusters or supercomputers for example, require matching binaries at each site. Thus, at some stage, each Grid enabled application needs to be recompiled for every platform. Up to now, creating matching binaries on different platforms was a manual, sequential, slow, and very error-prone process. Developers had to log into each machine, transfer source code, check consistency and recompile if necessary. This cumbersome procedure is surely one reason for the (still existing) lack of production Grid computing. Gridmake, a tool to automate and speed up this procedure is presented in this paper.}, language = {en} } @article{SchneidenbachSchnorPetri2003, author = {Schneidenbach, Lars and Schnor, Bettina and Petri, Stefan}, title = {Architecture and Implementation of the Socket Interface on Top of GAMMA}, isbn = {0-7695-2037-5}, year = {2003}, language = {en} }