@article{BanbaraInoueKaufmannetal.2018, author = {Banbara, Mutsunori and Inoue, Katsumi and Kaufmann, Benjamin and Okimoto, Tenda and Schaub, Torsten H. and Soh, Takehide and Tamura, Naoyuki and Wanko, Philipp}, title = {teaspoon}, series = {Annals of operation research}, volume = {275}, journal = {Annals of operation research}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0254-5330}, doi = {10.1007/s10479-018-2757-7}, pages = {3 -- 37}, year = {2018}, abstract = {Answer Set Programming (ASP) is an approach to declarative problem solving, combining a rich yet simple modeling language with high performance solving capacities. We here develop an ASP-based approach to curriculum-based course timetabling (CB-CTT), one of the most widely studied course timetabling problems. The resulting teaspoon system reads a CB-CTT instance of a standard input format and converts it into a set of ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving, which can subsequently be solved by any off-the-shelf ASP systems. We establish the competitiveness of our approach by empirically contrasting it to the best known bounds obtained so far via dedicated implementations. Furthermore, we extend the teaspoon system to multi-objective course timetabling and consider minimal perturbation problems.}, language = {en} } @article{BakeraMargariaRenneretal.2011, author = {Bakera, Marco and Margaria, Tiziana and Renner, Clemens D. and Steffen, Bernhard}, title = {Game-Based model checking for reliable autonomy in space}, series = {Journal of aerospace computing, information, and communication}, volume = {8}, journal = {Journal of aerospace computing, information, and communication}, number = {4}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston}, issn = {1940-3151}, doi = {10.2514/1.32013}, pages = {100 -- 114}, year = {2011}, abstract = {Autonomy is an emerging paradigm for the design and implementation of managed services and systems. Self-managed aspects frequently concern the communication of systems with their environment. Self-management subsystems are critical, they should thus be designed and implemented as high-assurance components. Here, we propose to use GEAR, a game-based model checker for the full modal mu-calculus, and derived, more user-oriented logics, as a user friendly tool that can offer automatic proofs of critical properties of such systems. Designers and engineers can interactively investigate automatically generated winning strategies resulting from the games, this way exploring the connection between the property, the system, and the proof. The benefits of the approach are illustrated on a case study that concerns the ExoMars Rover.}, language = {en} } @article{BailisDillahuntMuelleretal.2017, author = {Bailis, Peter and Dillahunt, Tawanna and M{\"u}ller, Stefanie and Baudisch, Patrick}, title = {Research for Practice: Technology for Underserved Communities; Personal Fabrication}, series = {Communications of the ACM / Association for Computing Machinery}, volume = {60}, journal = {Communications of the ACM / Association for Computing Machinery}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0001-0782}, doi = {10.1145/3080188}, pages = {46 -- 49}, year = {2017}, abstract = {THIS INSTALLMENT OF Research for Practice provides curated reading guides to technology for underserved communities and to new developments in personal fabrication. First, Tawanna Dillahunt describes design considerations and technology for underserved and impoverished communities. Designing for the more than 1.6 billion impoverished individuals worldwide requires special consideration of community needs, constraints, and context. Her selections span protocols for poor-quality communication networks, community-driven content generation, and resource and public service discovery. Second, Stefanie Mueller and Patrick Baudisch provide an overview of recent advances in personal fabrication (for example, 3D printers).}, language = {en} } @article{BaierMendlingWeske2014, author = {Baier, Thomas and Mendling, Jan and Weske, Mathias}, title = {Bridging abstraction layers in process mining}, series = {Information systems}, volume = {46}, journal = {Information systems}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2014.04.004}, pages = {123 -- 139}, year = {2014}, abstract = {While the maturity of process mining algorithms increases and more process mining tools enter the market, process mining projects still face the problem of different levels of abstraction when comparing events with modeled business activities. Current approaches for event log abstraction try to abstract from the events in an automated way that does not capture the required domain knowledge to fit business activities. This can lead to misinterpretation of discovered process models. We developed an approach that aims to abstract an event log to the same abstraction level that is needed by the business. We use domain knowledge extracted from existing process documentation to semi-automatically match events and activities. Our abstraction approach is able to deal with n:m relations between events and activities and also supports concurrency. We evaluated our approach in two case studies with a German IT outsourcing company. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BaierDiCiccioMendlingetal.2018, author = {Baier, Thomas and Di Ciccio, Claudio and Mendling, Jan and Weske, Mathias}, title = {Matching events and activities by integrating behavioral aspects and label analysis}, series = {Software and systems modeling}, volume = {17}, journal = {Software and systems modeling}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-017-0603-z}, pages = {573 -- 598}, year = {2018}, abstract = {Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs.}, language = {en} } @article{BaedkeSchoettler2017, author = {Baedke, Jan and Sch{\"o}ttler, Tobias}, title = {Visual Metaphors in the Sciences}, series = {Journal for General Philosophy of Science}, volume = {48}, journal = {Journal for General Philosophy of Science}, publisher = {Springer}, address = {Dordrecht}, issn = {0925-4560}, doi = {10.1007/s10838-016-9353-9}, pages = {173 -- 194}, year = {2017}, abstract = {Recent philosophical analyses of the epistemic dimension of images in the sciences show a certain trend in acknowledging potential roles of these images beyond their merely decorative or pedagogical functions. We argue, however, that this new debate has yet paid little attention to a special type of pictures, we call 'visual metaphor', and its versatile heuristic potential in organizing data, supporting communication, and guiding research, modeling, and theory formation. Based on a case study of Conrad Hal Waddington's epigenetic landscape images in biology, we develop a descriptive framework applicable to heuristic roles of various visual metaphors in the sciences.}, language = {en} } @article{ArrighiNesmeWerner2011, author = {Arrighi, Pablo and Nesme, Vincent and Werner, Reinhard F.}, title = {One-Dimensional quantum cellular automata}, series = {International journal of unconventional computing : non-classical computation and cellular automata}, volume = {7}, journal = {International journal of unconventional computing : non-classical computation and cellular automata}, number = {4}, publisher = {Old City Publishing Science}, address = {Philadelphia}, issn = {1548-7199}, pages = {223 -- 244}, year = {2011}, abstract = {We define and study quantum cellular automata (QCA). We show that they are reversible and that the neighborhood of the inverse is the opposite of the neighborhood. We also show that QCA always admit, modulo shifts, a two-layered block representation. Note that the same two-layered block representation result applies also over infinite configurations, as was previously shown for one-dimensional systems in the more elaborate formalism of operators algebras [18]. Here the proof is simpler and self-contained, moreover we discuss a counterexample QCA in higher dimensions.}, language = {en} } @article{Appeltauer2010, author = {Appeltauer, Malte}, title = {declarative and event-based context-oriented programming}, isbn = {978-3-86956-036-6}, year = {2010}, language = {en} } @article{AngerKonczakLinkeetal.2005, author = {Anger, Christian and Konczak, Kathrin and Linke, Thomas and Schaub, Torsten H.}, title = {A Glimpse of Answer Set Programming}, issn = {0170-4516}, year = {2005}, language = {en} } @article{AngerKonczakLinke2002, author = {Anger, Christian and Konczak, Kathrin and Linke, Thomas}, title = {NoMoRe: A system for non-monotonic reasoning with logic programs under answer set semantics}, isbn = {3-540-42254-4}, year = {2002}, language = {en} } @article{AngerKonczakLinke2002, author = {Anger, Christian and Konczak, Kathrin and Linke, Thomas}, title = {NoMoRe: Non-monotonic reasoning with logic programs}, isbn = {3-540-44190-5}, year = {2002}, language = {en} } @article{AngerKonczakLinke2001, author = {Anger, Christian and Konczak, Kathrin and Linke, Thomas}, title = {A system for non-monotonic reasoning under answer set semantics}, isbn = {3-540-42593-4}, year = {2001}, language = {en} } @article{AngerGebserSchaub2006, author = {Anger, Christian and Gebser, Martin and Schaub, Torsten H.}, title = {Approaching the core of unfounded sets}, year = {2006}, language = {en} } @article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten H.}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten H.}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{AngerGebserJanhunenetal.2006, author = {Anger, Christian and Gebser, Martin and Janhunen, Tomi and Schaub, Torsten H.}, title = {What's a head without a body?}, year = {2006}, language = {en} } @article{AndjelkovićChenSimevskietal.2021, author = {Andjelković, Marko and Chen, Junchao and Simevski, Aleksandar and Schrape, Oliver and Krstić, Miloš and Kraemer, Rolf}, title = {Monitoring of particle count rate and LET variations with pulse stretching inverters}, series = {IEEE transactions on nuclear science : a publication of the IEEE Nuclear and Plasma Sciences Society}, volume = {68}, journal = {IEEE transactions on nuclear science : a publication of the IEEE Nuclear and Plasma Sciences Society}, number = {8}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York, NY}, issn = {0018-9499}, doi = {10.1109/TNS.2021.3076400}, pages = {1772 -- 1781}, year = {2021}, abstract = {This study investigates the use of pulse stretching (skew-sized) inverters for monitoring the variation of count rate and linear energy transfer (LET) of energetic particles. The basic particle detector is a cascade of two pulse stretching inverters, and the required sensing area is obtained by connecting up to 12 two-inverter cells in parallel and employing the required number of parallel arrays. The incident particles are detected as single-event transients (SETs), whereby the SET count rate denotes the particle count rate, while the SET pulsewidth distribution depicts the LET variations. The advantage of the proposed solution is the possibility to sense the LET variations using fully digital processing logic. SPICE simulations conducted on IHP's 130-nm CMOS technology have shown that the SET pulsewidth varies by approximately 550 ps over the LET range from 1 to 100 MeV center dot cm(2) center dot mg(-1). The proposed detector is intended for triggering the fault-tolerant mechanisms within a self-adaptive multiprocessing system employed in space. It can be implemented as a standalone detector or integrated in the same chip with the target system.}, language = {en} } @article{AndjelkovicSimevskiChenetal.2022, author = {Andjelkovic, Marko and Simevski, Aleksandar and Chen, Junchao and Schrape, Oliver and Stamenkovic, Zoran and Krstić, Miloš and Ilic, Stefan and Ristic, Goran and Jaksic, Aleksandar and Vasovic, Nikola and Duane, Russell and Palma, Alberto J. and Lallena, Antonio M. and Carvajal, Miguel A.}, title = {A design concept for radiation hardened RADFET readout system for space applications}, series = {Microprocessors and microsystems}, volume = {90}, journal = {Microprocessors and microsystems}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-9331}, doi = {10.1016/j.micpro.2022.104486}, pages = {18}, year = {2022}, abstract = {Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions.}, language = {en} } @article{Alnemr2010, author = {Alnemr, Rehab}, title = {Context-aware Reputation in SOA and future internet}, isbn = {978-3-86956-036-6}, year = {2010}, language = {en} } @article{AlLabanRegerLucke2022, author = {Al Laban, Firas and Reger, Martin and Lucke, Ulrike}, title = {Closing the Policy Gap in the Academic Bridge}, series = {Education sciences}, volume = {12}, journal = {Education sciences}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2227-7102}, doi = {10.3390/educsci12120930}, year = {2022}, abstract = {The highly structured nature of the educational sector demands effective policy mechanisms close to the needs of the field. That is why evidence-based policy making, endorsed by the European Commission under Erasmus+ Key Action 3, aims to make an alignment between the domains of policy and practice. Against this background, this article addresses two issues: First, that there is a vertical gap in the translation of higher-level policies to local strategies and regulations. Second, that there is a horizontal gap between educational domains regarding the policy awareness of individual players. This was analyzed in quantitative and qualitative studies with domain experts from the fields of virtual mobility and teacher training. From our findings, we argue that the combination of both gaps puts the academic bridge from secondary to tertiary education at risk, including the associated knowledge proficiency levels. We discuss the role of digitalization in the academic bridge by asking the question: which value does the involved stakeholders expect from educational policies? As a theoretical basis, we rely on the model of value co-creation for and by stakeholders. We describe the used instruments along with the obtained results and proposed benefits. Moreover, we reflect on the methodology applied, and we finally derive recommendations for future academic bridge policies.}, language = {en} } @article{AhmadShoaibPrinetto2015, author = {Ahmad, Nadeem and Shoaib, Umar and Prinetto, Paolo}, title = {Usability of Online Assistance From Semiliterate Users' Perspective}, series = {International journal of human computer interaction}, volume = {31}, journal = {International journal of human computer interaction}, number = {1}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1044-7318}, doi = {10.1080/10447318.2014.925772}, pages = {55 -- 64}, year = {2015}, language = {en} } @article{AguadoCabalarFandinoetal.2019, author = {Aguado, Felicidad and Cabalar, Pedro and Fandi{\~n}o, Jorge and Pearce, David and Perez, Gilberto and Vidal-Peracho, Concepcion}, title = {Revisiting Explicit Negation in Answer Set Programming}, series = {Theory and practice of logic programming}, volume = {19}, journal = {Theory and practice of logic programming}, number = {5-6}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068419000267}, pages = {908 -- 924}, year = {2019}, language = {en} } @article{AguadoCabalarFandinoetal.2019, author = {Aguado, Felicidad and Cabalar, Pedro and Fandi{\~n}o, Jorge and Pearce, David and Perez, Gilberto and Vidal, Concepcion}, title = {Forgetting auxiliary atoms in forks}, series = {Artificial intelligence}, volume = {275}, journal = {Artificial intelligence}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0004-3702}, doi = {10.1016/j.artint.2019.07.005}, pages = {575 -- 601}, year = {2019}, abstract = {In this work we tackle the problem of checking strong equivalence of logic programs that may contain local auxiliary atoms, to be removed from their stable models and to be forbidden in any external context. We call this property projective strong equivalence (PSE). It has been recently proved that not any logic program containing auxiliary atoms can be reformulated, under PSE, as another logic program or formula without them - this is known as strongly persistent forgetting. In this paper, we introduce a conservative extension of Equilibrium Logic and its monotonic basis, the logic of Here-and-There, in which we deal with a new connective '|' we call fork. We provide a semantic characterisation of PSE for forks and use it to show that, in this extension, it is always possible to forget auxiliary atoms under strong persistence. We further define when the obtained fork is representable as a regular formula.}, language = {en} } @article{AfantenosPeldszusStede2018, author = {Afantenos, Stergos and Peldszus, Andreas and Stede, Manfred}, title = {Comparing decoding mechanisms for parsing argumentative structures}, series = {Argument \& Computation}, volume = {9}, journal = {Argument \& Computation}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1946-2166}, doi = {10.3233/AAC-180033}, pages = {177 -- 192}, year = {2018}, abstract = {Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.}, language = {en} } @article{AbuJarour2010, author = {AbuJarour, Mohammed}, title = {Information integration in services computing}, isbn = {978-3-86956-036-6}, year = {2010}, language = {en} } @article{AbdelwahabLandwehr2022, author = {Abdelwahab, Ahmed and Landwehr, Niels}, title = {Deep Distributional Sequence Embeddings Based on a Wasserstein Loss}, series = {Neural processing letters}, journal = {Neural processing letters}, publisher = {Springer}, address = {Dordrecht}, issn = {1370-4621}, doi = {10.1007/s11063-022-10784-y}, pages = {21}, year = {2022}, abstract = {Deep metric learning employs deep neural networks to embed instances into a metric space such that distances between instances of the same class are small and distances between instances from different classes are large. In most existing deep metric learning techniques, the embedding of an instance is given by a feature vector produced by a deep neural network and Euclidean distance or cosine similarity defines distances between these vectors. This paper studies deep distributional embeddings of sequences, where the embedding of a sequence is given by the distribution of learned deep features across the sequence. The motivation for this is to better capture statistical information about the distribution of patterns within the sequence in the embedding. When embeddings are distributions rather than vectors, measuring distances between embeddings involves comparing their respective distributions. The paper therefore proposes a distance metric based on Wasserstein distances between the distributions and a corresponding loss function for metric learning, which leads to a novel end-to-end trainable embedding model. We empirically observe that distributional embeddings outperform standard vector embeddings and that training with the proposed Wasserstein metric outperforms training with other distance functions.}, language = {en} }