@article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{GressmannJanhunenMerceretal.2005, author = {Gressmann, Jean and Janhunen, Tomi and Mercer, Robert E. and Schaub, Torsten and Thiele, Sven and Tichy, Richard}, title = {Platypus : a platform for distributed answer set solving}, year = {2005}, language = {en} } @article{SarsakovSchaubTompitsetal.2004, author = {Sarsakov, Vladimir and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {A compiler for nested logic programming}, isbn = {3-540- 20721-x}, year = {2004}, language = {en} } @article{GebserLiuNamasivayametal.2007, author = {Gebser, Martin and Liu, Lengning and Namasivayam, Gayathri and Neumann, Andr{\´e} and Schaub, Torsten and Truszczynski, Miroslaw}, title = {The first answer set programming system competition}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{AngerKonczakLinkeetal.2005, author = {Anger, Christian and Konczak, Kathrin and Linke, Thomas and Schaub, Torsten}, title = {A Glimpse of Answer Set Programming}, issn = {0170-4516}, year = {2005}, language = {en} } @article{GrellKonczakSchaub2005, author = {Grell, Susanne and Konczak, Kathrin and Schaub, Torsten}, title = {nomore) : a system for computing preferred Answer Sets}, issn = {0302-9743}, year = {2005}, language = {en} } @article{KonczakSchaubLinke2003, author = {Konczak, Kathrin and Schaub, Torsten and Linke, Thomas}, title = {Graphs and colorings for answer set programming with preferences}, issn = {0169-2968}, year = {2003}, abstract = {The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one}, language = {en} } @article{BesnardSchaubTompitsetal.2003, author = {Besnard, Philippe and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {Paraconsistent reasoning via quantified boolean formulas : Part II: Circumscribing inconsistent theories}, isbn = {3-540- 409494-5}, year = {2003}, language = {en} } @article{DelgrandeHunterSchaub2002, author = {Delgrande, James Patrick and Hunter, Anthony and Schaub, Torsten}, title = {COBA: a consistency-based belief revision system}, isbn = {3-540-44190-5}, year = {2002}, language = {en} } @article{FloeterNicolasSchaubetal.2003, author = {Fl{\"o}ter, Andr{\´e} and Nicolas, Jacques and Schaub, Torsten and Selbig, Joachim}, title = {Threshold extraction in metabolite concentration data}, year = {2003}, language = {en} } @article{SchaubWang2002, author = {Schaub, Torsten and Wang, T.}, title = {Preferred well-founded semantics for logic programming by alternating fixpoints : preliminary report}, year = {2002}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten}, title = {A concictency-based paradigm for belief change}, issn = {0004-3702}, year = {2003}, language = {en} } @article{BesnardFanselowSchaub2002, author = {Besnard, Philippe and Fanselow, Gisbert and Schaub, Torsten}, title = {Optimality theory as a family of cumulative logics}, year = {2002}, language = {en} } @article{DelgrandeSchaub2002, author = {Delgrande, James Patrick and Schaub, Torsten}, title = {Reasoning credulously and skeptically within a single extension}, year = {2002}, language = {en} } @article{Schaub2003, author = {Schaub, Torsten}, title = {Antwortmengenprogrammierung}, year = {2003}, language = {de} } @article{DelgrandeSchaubTompits2000, author = {Delgrande, James Patrick and Schaub, Torsten and Tompits, Hans}, title = {A compilation of Brewka and Eiter's approach to prioritizationtion}, isbn = {3-540-41131-3}, year = {2000}, language = {en} } @article{DelgrandeSchaubTompits2000, author = {Delgrande, James Patrick and Schaub, Torsten and Tompits, Hans}, title = {Logic programs with compiled preferences}, isbn = {1-58603-013-2}, year = {2000}, language = {en} } @article{DelgrandeSchaub2000, author = {Delgrande, James Patrick and Schaub, Torsten}, title = {A consistency-based model for belief change: preliminary report}, isbn = {0-262-51112-6}, year = {2000}, language = {en} } @article{BesnardSchaub2000, author = {Besnard, Philippe and Schaub, Torsten}, title = {Significant inferences}, isbn = {1-55860-690-4}, year = {2000}, language = {en} } @article{DelgrandeSchaubTompits2000, author = {Delgrande, James Patrick and Schaub, Torsten and Tompits, Hans}, title = {Logic programs with compiled preferences}, year = {2000}, language = {en} } @article{DelgrandeSchaubTompits2000, author = {Delgrande, James Patrick and Schaub, Torsten and Tompits, Hans}, title = {A compiler for ordered logic programs}, year = {2000}, language = {en} } @article{BesnardSchaub2000, author = {Besnard, Philippe and Schaub, Torsten}, title = {What is a (non-constructive) non-monotone logical system?}, issn = {0304-3975}, year = {2000}, language = {en} } @article{BrueningSchaub2000, author = {Br{\"u}ning, Stefan and Schaub, Torsten}, title = {A connection calculus for handling incomplete information}, year = {2000}, language = {en} } @article{DelgrandeSchaub2000, author = {Delgrande, James Patrick and Schaub, Torsten}, title = {Expressing preferences in default logic}, issn = {0004-3702}, year = {2000}, language = {en} } @article{SchaubNicolas1997, author = {Schaub, Torsten and Nicolas, Pascal}, title = {An implementation platform for query-answering in default logics : the XRay system, its implementation and evaluation}, isbn = {3-540-63255-7}, year = {1997}, language = {en} } @article{SchaubNicolas1997, author = {Schaub, Torsten and Nicolas, Pascal}, title = {An implementation platform for query-answering in default logics : theoretical underpinnings}, isbn = {3-540-63614-5}, year = {1997}, language = {en} } @article{DelgrandeSchaub1997, author = {Delgrande, James Patrick and Schaub, Torsten}, title = {Compiling reasoning with and about preferences into default logic}, isbn = {1-558-60480-4}, issn = {1045-0823}, year = {1997}, language = {en} } @article{SchaubThielscher1996, author = {Schaub, Torsten and Thielscher, Michael}, title = {Skeptical query-answering in constrained default logic}, isbn = {3-540-61313-7}, year = {1996}, language = {en} } @article{BrueningSchaub1996, author = {Br{\"u}ning, Stefan and Schaub, Torsten}, title = {A model-based approach to consistency-checking}, isbn = {3-540-61286-6}, year = {1996}, language = {en} } @article{BesnardSchaub1997, author = {Besnard, Philippe and Schaub, Torsten}, title = {Circumscribing inconsistency}, isbn = {1-558-60480-4}, issn = {1045-0823}, year = {1997}, language = {en} } @article{SchaubBruening1996, author = {Schaub, Torsten and Br{\"u}ning, Stefan}, title = {Prolog technology for default reasoning}, isbn = {0-471-96809-9}, year = {1996}, language = {en} } @article{DelgrandeSchaub1997, author = {Delgrande, James Patrick and Schaub, Torsten}, title = {Compiling specificity into approaches to nonmonotonic reasoning}, issn = {0004-3702}, year = {1997}, language = {en} } @article{LinkeSchaub1997, author = {Linke, Thomas and Schaub, Torsten}, title = {Towards a classification of default logic}, year = {1997}, language = {en} } @article{VidelaGuziolowskiEduatietal.2015, author = {Videla, Santiago and Guziolowski, Carito and Eduati, Federica and Thiele, Sven and Gebser, Martin and Nicolas, Jacques and Saez-Rodriguez, Julio and Schaub, Torsten and Siegel, Anne}, title = {Learning Boolean logic models of signaling networks with ASP}, series = {Theoretical computer science}, volume = {599}, journal = {Theoretical computer science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3975}, doi = {10.1016/j.tcs.2014.06.022}, pages = {79 -- 101}, year = {2015}, abstract = {Boolean networks provide a simple yet powerful qualitative modeling approach in systems biology. However, manual identification of logic rules underlying the system being studied is in most cases out of reach. Therefore, automated inference of Boolean logical networks from experimental data is a fundamental question in this field. This paper addresses the problem consisting of learning from a prior knowledge network describing causal interactions and phosphorylation activities at a pseudo-steady state, Boolean logic models of immediate-early response in signaling transduction networks. The underlying optimization problem has been so far addressed through mathematical programming approaches and the use of dedicated genetic algorithms. In a recent work we have shown severe limitations of stochastic approaches in this domain and proposed to use Answer Set Programming (ASP), considering a simpler problem setting. Herein, we extend our previous work in order to consider more realistic biological conditions including numerical datasets, the presence of feedback-loops in the prior knowledge network and the necessity of multi-objective optimization. In order to cope with such extensions, we propose several discretization schemes and elaborate upon our previous ASP encoding. Towards real-world biological data, we evaluate the performance of our approach over in silico numerical datasets based on a real and large-scale prior knowledge network. The correctness of our encoding and discretization schemes are dealt with in Appendices A-B. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{HoosKaminskiLindaueretal.2015, author = {Hoos, Holger and Kaminski, Roland and Lindauer, Marius and Schaub, Torsten}, title = {aspeed: Solver scheduling via answer set programming}, series = {Theory and practice of logic programming}, volume = {15}, journal = {Theory and practice of logic programming}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068414000015}, pages = {117 -- 142}, year = {2015}, abstract = {Although Boolean Constraint Technology has made tremendous progress over the last decade, the efficacy of state-of-the-art solvers is known to vary considerably across different types of problem instances, and is known to depend strongly on algorithm parameters. This problem was addressed by means of a simple, yet effective approach using handmade, uniform, and unordered schedules of multiple solvers in ppfolio, which showed very impressive performance in the 2011 Satisfiability Testing (SAT) Competition. Inspired by this, we take advantage of the modeling and solving capacities of Answer Set Programming (ASP) to automatically determine more refined, that is, nonuniform and ordered solver schedules from the existing benchmarking data. We begin by formulating the determination of such schedules as multi-criteria optimization problems and provide corresponding ASP encodings. The resulting encodings are easily customizable for different settings, and the computation of optimum schedules can mostly be done in the blink of an eye, even when dealing with large runtime data sets stemming from many solvers on hundreds to thousands of instances. Also, the fact that our approach can be customized easily enabled us to swiftly adapt it to generate parallel schedules for multi-processor machines.}, language = {en} } @article{GebserKaufmannKaminskietal.2011, author = {Gebser, Martin and Kaufmann, Benjamin and Kaminski, Roland and Ostrowski, Max and Schaub, Torsten and Schneider, Marius}, title = {Potassco the Potsdam answer set solving collection}, series = {AI communications : AICOM ; the European journal on artificial intelligence}, volume = {24}, journal = {AI communications : AICOM ; the European journal on artificial intelligence}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {0921-7126}, doi = {10.3233/AIC-2011-0491}, pages = {107 -- 124}, year = {2011}, abstract = {This paper gives an overview of the open source project Potassco, the Potsdam Answer Set Solving Collection, bundling tools for Answer Set Programming developed at the University of Potsdam.}, language = {en} } @article{CabalarFandinoSchaubetal.2019, author = {Cabalar, Pedro and Fandi{\~n}o, Jorge and Schaub, Torsten and Schellhorn, Sebastian}, title = {Gelfond-Zhang aggregates as propositional formulas}, series = {Artificial intelligence}, volume = {274}, journal = {Artificial intelligence}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0004-3702}, doi = {10.1016/j.artint.2018.10.007}, pages = {26 -- 43}, year = {2019}, abstract = {Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide.}, language = {en} } @article{DimopoulosGebserLuehneetal.2019, author = {Dimopoulos, Yannis and Gebser, Martin and L{\"u}hne, Patrick and Romero Davila, Javier and Schaub, Torsten}, title = {plasp 3}, series = {Theory and practice of logic programming}, volume = {19}, journal = {Theory and practice of logic programming}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068418000583}, pages = {477 -- 504}, year = {2019}, abstract = {We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning.}, language = {en} } @article{KaminskiSchaubSiegeletal.2013, author = {Kaminski, Roland and Schaub, Torsten and Siegel, Anne and Videla, Santiago}, title = {Minimal intervention strategies in logical signaling networks with ASP}, series = {Theory and practice of logic programming}, volume = {13}, journal = {Theory and practice of logic programming}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068413000422}, pages = {675 -- 690}, year = {2013}, abstract = {Proposing relevant perturbations to biological signaling networks is central to many problems in biology and medicine because it allows for enabling or disabling certain biological outcomes. In contrast to quantitative methods that permit fine-grained (kinetic) analysis, qualitative approaches allow for addressing large-scale networks. This is accomplished by more abstract representations such as logical networks. We elaborate upon such a qualitative approach aiming at the computation of minimal interventions in logical signaling networks relying on Kleene's three-valued logic and fixpoint semantics. We address this problem within answer set programming and show that it greatly outperforms previous work using dedicated algorithms.}, language = {en} } @article{SchaubBrueningNicolas1996, author = {Schaub, Torsten and Br{\"u}ning, Stefan and Nicolas, Pascal}, title = {XRay : a prolog technology theorem prover for default reasoning: a system description}, isbn = {3-540-61511-3}, year = {1996}, language = {en} } @article{BesnardSchaub1996, author = {Besnard, Philippe and Schaub, Torsten}, title = {A simple signed system for paraconsistent reasoning}, isbn = {3-540-61630-6}, year = {1996}, language = {en} } @article{GebserSchaubTompitsetal.2007, author = {Gebser, Martin and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report}, year = {2007}, language = {en} } @article{GebserObermeierSchaubetal.2018, author = {Gebser, Martin and Obermeier, Philipp and Schaub, Torsten and Ratsch-Heitmann, Michel and Runge, Mario}, title = {Routing driverless transport vehicles in car assembly with answer set programming}, series = {Theory and practice of logic programming}, volume = {18}, journal = {Theory and practice of logic programming}, number = {3-4}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068418000182}, pages = {520 -- 534}, year = {2018}, abstract = {Automated storage and retrieval systems are principal components of modern production and warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated pallet trucks in transporting production materials between storage locations and assembly stations. While low-level control systems take care of navigating such driverless vehicles along programmed routes and avoid collisions even under unforeseen circumstances, in the common case of multiple vehicles sharing the same operation area, the problem remains how to set up routes such that a collection of transport tasks is accomplished most effectively. We address this prevalent problem in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial vehicles, where routes for automated guided vehicles used in the production process have traditionally been hand-coded by human engineers. Such adhoc methods may suffice as long as a running production process remains in place, while any change in the factory layout or production targets necessitates tedious manual reconfiguration, not to mention the missing portability between different production plants. Unlike this, we propose a declarative approach based on Answer Set Programming to optimize the routes taken by automated guided vehicles for accomplishing transport tasks. The advantages include a transparent and executable problem formalization, provable optimality of routes relative to objective criteria, as well as elaboration tolerance towards particular factory layouts and production targets. Moreover, we demonstrate that our approach is efficient enough to deal with the transport tasks evolving in realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH.}, language = {en} } @article{LindauerHoosLeytonBrownetal.2017, author = {Lindauer, Marius and Hoos, Holger and Leyton-Brown, Kevin and Schaub, Torsten}, title = {Automatic construction of parallel portfolios via algorithm configuration}, series = {Artificial intelligence}, volume = {244}, journal = {Artificial intelligence}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0004-3702}, doi = {10.1016/j.artint.2016.05.004}, pages = {272 -- 290}, year = {2017}, abstract = {Since 2004, increases in computational power described by Moore's law have substantially been realized in the form of additional cores rather than through faster clock speeds. To make effective use of modern hardware when solving hard computational problems, it is therefore necessary to employ parallel solution strategies. In this work, we demonstrate how effective parallel solvers for propositional satisfiability (SAT), one of the most widely studied NP-complete problems, can be produced automatically from any existing sequential, highly parametric SAT solver. Our Automatic Construction of Parallel Portfolios (ACPP) approach uses an automatic algorithm configuration procedure to identify a set of configurations that perform well when executed in parallel. Applied to two prominent SAT solvers, Lingeling and clasp, our ACPP procedure identified 8-core solvers that significantly outperformed their sequential counterparts on a diverse set of instances from the application and hard combinatorial category of the 2012 SAT Challenge. We further extended our ACPP approach to produce parallel portfolio solvers consisting of several different solvers by combining their configuration spaces. Applied to the component solvers of the 2012 SAT Challenge gold medal winning SAT Solver pfolioUZK, our ACPP procedures produced a significantly better-performing parallel SAT solver.}, language = {en} } @article{GebserKaminskiKaufmannetal.2018, author = {Gebser, Martin and Kaminski, Roland and Kaufmann, Benjamin and L{\"u}hne, Patrick and Obermeier, Philipp and Ostrowski, Max and Romero Davila, Javier and Schaub, Torsten and Schellhorn, Sebastian and Wanko, Philipp}, title = {The Potsdam Answer Set Solving Collection 5.0}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0528-x}, pages = {181 -- 182}, year = {2018}, abstract = {The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems.}, language = {en} } @article{GebserKaufmannSchaub2012, author = {Gebser, Martin and Kaufmann, Benjamin and Schaub, Torsten}, title = {Conflict-driven answer set solving: From theory to practice}, series = {Artificial intelligence}, volume = {187}, journal = {Artificial intelligence}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0004-3702}, doi = {10.1016/j.artint.2012.04.001}, pages = {52 -- 89}, year = {2012}, abstract = {We introduce an approach to computing answer sets of logic programs, based on concepts successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with a uniform constraint-based framework capturing diverse inferences encountered in ASP solving. Moreover, our approach allows us to apply advanced solving techniques from the area of SAT. As a result, we present the first full-fledged algorithmic framework for native conflict-driven ASP solving. Our approach is implemented in the ASP solver clasp that has demonstrated its competitiveness and versatility by winning first places at various solver contests.}, language = {en} } @article{BesnardSchaubTompitsetal.2002, author = {Besnard, Philippe and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {Paraconsistent reasoning via quantified boolean formulas}, isbn = {3-540-44190-5}, year = {2002}, language = {en} } @article{GebserKaufmannNeumannetal.2007, author = {Gebser, Martin and Kaufmann, Benjamin and Neumann, Andr{\´e} and Schaub, Torsten}, title = {Clasp : a conflict-driven answer set solver}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{BrainFaberMarateaetal.2007, author = {Brain, Martin and Faber, Wolfgang and Maratea, Marco and Polleres, Axel and Schaub, Torsten and Schindlauer, Roman}, title = {What should an ASP solver output? : a multiple position paper}, year = {2007}, language = {en} }