@article{GebserLiuNamasivayametal.2007, author = {Gebser, Martin and Liu, Lengning and Namasivayam, Gayathri and Neumann, Andr{\´e} and Schaub, Torsten H. and Truszczynski, Miroslaw}, title = {The first answer set programming system competition}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{BorchertAngerSchaubetal.2004, author = {Borchert, P. and Anger, Christian and Schaub, Torsten H. and Truszczynski, M.}, title = {Towards systematic benchmarking in answer set programming : the dagstuhl initiative}, isbn = {3-540- 20721-x}, year = {2004}, language = {en} } @article{DelgrandeSchaub2004, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {Two approaches to merging knowledge bases}, isbn = {3-540-23242-7}, year = {2004}, language = {en} } @article{DelgrandeSchaubTompits2004, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans}, title = {Domain-specific preference for causal reasoning and planning}, isbn = {1-577-35201-7}, year = {2004}, language = {en} } @article{FloeterSelbigSchaub2004, author = {Fl{\"o}ter, Andr{\´e} and Selbig, Joachim and Schaub, Torsten H.}, title = {Finding metabolic pathways in decision forests}, isbn = {3-540-23221-4}, year = {2004}, language = {en} } @article{DelgrandeSchaub2004, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {Consistency-based approaches to merging knowledge based : preliminary report}, isbn = {92-990021-0-X}, year = {2004}, language = {en} } @article{FloeterNicolasSchaubetal.2004, author = {Fl{\"o}ter, Andr{\´e} and Nicolas, Jacques and Schaub, Torsten H. and Selbig, Joachim}, title = {Threshold extraction in metabolite concentration data}, year = {2004}, abstract = {Motivation: Continued development of analytical techniques based on gas chromatography and mass spectrometry now facilitates the generation of larger sets of metabolite concentration data. An important step towards the understanding of metabolite dynamics is the recognition of stable states where metabolite concentrations exhibit a simple behaviour. Such states can be characterized through the identification of significant thresholds in the concentrations. But general techniques for finding discretization thresholds in continuous data prove to be practically insufficient for detecting states due to the weak conditional dependences in concentration data. Results: We introduce a method of recognizing states in the framework of decision tree induction. It is based upon a global analysis of decision forests where stability and quality are evaluated. It leads to the detection of thresholds that are both comprehensible and robust. Applied to metabolite concentration data, this method has led to the discovery of hidden states in the corresponding variables. Some of these reflect known properties of the biological experiments, and others point to putative new states}, language = {en} } @article{DelgrandeSchaubTompitsetal.2004, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans and Wang, Kewen}, title = {A classification and survey of preference handling approchaches in nonmonotonic reasoning}, issn = {0824-7935}, year = {2004}, abstract = {In recent years, there has been a large amount of disparate work concerning the representation and reasoning with qualitative preferential information by means of approaches to nonmonotonic reasoning. Given the variety of underlying systems, assumptions, motivations, and intuitions, it is difficult to compare or relate one approach with another. Here, we present an overview and classification for approaches to dealing with preference. A set of criteria for classifying approaches is given, followed by a set of desiderata that an approach might be expected to satisfy. A comprehensive set of approaches is subsequently given and classified with respect to these sets of underlying principles}, language = {en} } @article{DelgrandeSchaub2004, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {Reasoning with sets of preferences in default logic}, issn = {0824-7935}, year = {2004}, abstract = {We present a general approach for representing and reasoning with sets of defaults in default logic, focusing on reasoning about preferences among sets of defaults. First, we consider how to control the application of a set of defaults so that either all apply (if possible) or none do (if not). From this, an approach to dealing with preferences among sets of default rules is developed. We begin with an ordered default theory, consisting of a standard default theory, but with possible preferences on sets of rules. This theory is transformed into a second, standard default theory wherein the preferences are respected. The approach differs from other work, in that we obtain standard default theories and do not rely on prioritized versions of default logic. In practical terms this means we can immediately use existing default logic theorem provers for an implementation. Also, we directly generate just those extensions containing the most preferred applied rules; in contrast, most previous approaches generate all extensions, then select the most preferred. In a major application of the approach, we show how semimonotonic default theories can be encoded so that reasoning can be carried out at the object level. With this, we can reason about default extensions from within the framework of a standard default logic. Hence one can encode notions such as skeptical and credulous conclusions, and can reason about such conclusions within a single extension}, language = {en} } @article{DelgrandeSchaubTompits2003, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans}, title = {A framework for compiling preferences in logic programs}, year = {2003}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {Reasoning credulously and skeptically within a single extension}, year = {2003}, language = {en} } @article{KonczakLinkeSchaub2003, author = {Konczak, Kathrin and Linke, Thomas and Schaub, Torsten H.}, title = {Graphs and colorings for answer set programming : abridged report}, issn = {1613-0073}, year = {2003}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {On the relation between Reiter{\"i}s default logic and its (major) variants}, isbn = {3-540- 409494-5}, year = {2003}, language = {en} } @article{BesnardMercerSchaub2003, author = {Besnard, Philippe and Mercer, Robert E. and Schaub, Torsten H.}, title = {Optimality theory throught default logic}, isbn = {3-540-20059-2}, year = {2003}, language = {en} } @article{KonczakSchaubLinke2003, author = {Konczak, Kathrin and Schaub, Torsten H. and Linke, Thomas}, title = {Graphs and colorings for answer set programming with prefernces : preliminary report}, issn = {1613-0073}, year = {2003}, language = {en} } @article{DelgrandeGharibMerceretal.2003, author = {Delgrande, James Patrick and Gharib, Mona and Mercer, Robert E. and Risch, V. and Schaub, Torsten H.}, title = {Lukaszewicz-style answer set programming : a preliminary report}, issn = {1613-0073}, year = {2003}, language = {en} } @article{SchaubWang2003, author = {Schaub, Torsten H. and Wang, Kewen}, title = {A semantic framework for prefernce handling in answer set programming}, year = {2003}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {A concictency-based paradigm for belief change}, issn = {0004-3702}, year = {2003}, language = {en} } @article{Schaub2003, author = {Schaub, Torsten H.}, title = {Antwortmengenprogrammierung}, year = {2003}, language = {de} } @article{KonczakSchaubLinke2003, author = {Konczak, Kathrin and Schaub, Torsten H. and Linke, Thomas}, title = {Graphs and colorings for answer set programming with preferences}, issn = {0169-2968}, year = {2003}, abstract = {The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one}, language = {en} }