@article{SchaubBrueningNicolas1996, author = {Schaub, Torsten H. and Br{\"u}ning, Stefan and Nicolas, Pascal}, title = {XRay : a prolog technology theorem prover for default reasoning: a system description}, isbn = {3-540-61511-3}, year = {1996}, language = {en} } @article{AngerGebserJanhunenetal.2006, author = {Anger, Christian and Gebser, Martin and Janhunen, Tomi and Schaub, Torsten H.}, title = {What's a head without a body?}, year = {2006}, language = {en} } @article{BrainFaberMarateaetal.2007, author = {Brain, Martin and Faber, Wolfgang and Maratea, Marco and Polleres, Axel and Schaub, Torsten H. and Schindlauer, Roman}, title = {What should an ASP solver output? : a multiple position paper}, year = {2007}, language = {en} } @article{BesnardSchaub2000, author = {Besnard, Philippe and Schaub, Torsten H.}, title = {What is a (non-constructive) non-monotone logical system?}, issn = {0304-3975}, year = {2000}, language = {en} } @article{FandinoLifschitzLuehneetal.2020, author = {Fandi{\~n}o, Jorge and Lifschitz, Vladimir and L{\"u}hne, Patrick and Schaub, Torsten H.}, title = {Verifying tight logic programs with Anthem and Vampire}, series = {Theory and practice of logic programming}, volume = {20}, journal = {Theory and practice of logic programming}, number = {5}, publisher = {Cambridge Univ. Press}, address = {Cambridge [u.a.]}, issn = {1471-0684}, doi = {10.1017/S1471068420000344}, pages = {735 -- 750}, year = {2020}, abstract = {This paper continues the line of research aimed at investigating the relationship between logic programs and first-order theories. We extend the definition of program completion to programs with input and output in a subset of the input language of the ASP grounder gringo, study the relationship between stable models and completion in this context, and describe preliminary experiments with the use of two software tools, anthem and vampire, for verifying the correctness of programs with input and output. Proofs of theorems are based on a lemma that relates the semantics of programs studied in this paper to stable models of first-order formulas.}, language = {en} } @misc{NeubauerHaubeltWankoetal.2018, author = {Neubauer, Kai and Haubelt, Christian and Wanko, Philipp and Schaub, Torsten H.}, title = {Utilizing quad-trees for efficient design space exploration with partial assignment evaluation}, series = {2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC)}, journal = {2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5090-0602-1}, issn = {2153-6961}, doi = {10.1109/ASPDAC.2018.8297362}, pages = {434 -- 439}, year = {2018}, abstract = {Recently, it has been shown that constraint-based symbolic solving techniques offer an efficient way for deciding binding and routing options in order to obtain a feasible system level implementation. In combination with various background theories, a feasibility analysis of the resulting system may already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can be pruned early in the decision process, which fastens the solving accordingly. However, allowing a proper design space exploration including multi-objective optimization also requires an efficient structure for storing and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree data structure in the context of partial assignment evaluation during system synthesis. Out experiments show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees over a commonly used list-based implementation for large combinatorial optimization problems.}, language = {en} } @article{NicolasSchaub1998, author = {Nicolas, Pascal and Schaub, Torsten H.}, title = {Un cadre g{\´e}n{\´e}ral pour l'interrogation automatique en logiques des d{\´e}fauts}, year = {1998}, language = {fr} } @article{DelgrandeSchaub2004, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {Two approaches to merging knowledge bases}, isbn = {3-540-23242-7}, year = {2004}, language = {en} } @article{BorchertAngerSchaubetal.2004, author = {Borchert, P. and Anger, Christian and Schaub, Torsten H. and Truszczynski, M.}, title = {Towards systematic benchmarking in answer set programming : the dagstuhl initiative}, isbn = {3-540- 20721-x}, year = {2004}, language = {en} } @article{CabalarDieguezSchaubetal.2020, author = {Cabalar, Pedro and Dieguez, Martin and Schaub, Torsten H. and Schuhmann, Anna}, title = {Towards metric temporal answer set programming}, series = {Theory and practice of logic programming}, volume = {20}, journal = {Theory and practice of logic programming}, number = {5}, publisher = {Cambridge Univ. Press}, address = {Cambridge [u.a.]}, issn = {1471-0684}, doi = {10.1017/S1471068420000307}, pages = {783 -- 798}, year = {2020}, abstract = {We elaborate upon the theoretical foundations of a metric temporal extension of Answer Set Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the same semantic underpinnings as its predecessors and thus use a simple time domain of bounded time steps. This allows us to compare all variants in a uniform framework and ultimately combine them in a common implementation.}, language = {en} } @article{DelgrandeSchaubTompitsetal.2002, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans and Wang, Kewen}, title = {Towards a classification of preference handling approaches in nonmonotonic reasoning}, isbn = {1-577-35166-5}, year = {2002}, language = {en} } @article{LinkeSchaub1997, author = {Linke, Thomas and Schaub, Torsten H.}, title = {Towards a classification of default logic}, year = {1997}, language = {en} } @article{FloeterNicolasSchaubetal.2004, author = {Fl{\"o}ter, Andr{\´e} and Nicolas, Jacques and Schaub, Torsten H. and Selbig, Joachim}, title = {Threshold extraction in metabolite concentration data}, year = {2004}, abstract = {Motivation: Continued development of analytical techniques based on gas chromatography and mass spectrometry now facilitates the generation of larger sets of metabolite concentration data. An important step towards the understanding of metabolite dynamics is the recognition of stable states where metabolite concentrations exhibit a simple behaviour. Such states can be characterized through the identification of significant thresholds in the concentrations. But general techniques for finding discretization thresholds in continuous data prove to be practically insufficient for detecting states due to the weak conditional dependences in concentration data. Results: We introduce a method of recognizing states in the framework of decision tree induction. It is based upon a global analysis of decision forests where stability and quality are evaluated. It leads to the detection of thresholds that are both comprehensible and robust. Applied to metabolite concentration data, this method has led to the discovery of hidden states in the corresponding variables. Some of these reflect known properties of the biological experiments, and others point to putative new states}, language = {en} } @article{FloeterNicolasSchaubetal.2003, author = {Fl{\"o}ter, Andr{\´e} and Nicolas, Jacques and Schaub, Torsten H. and Selbig, Joachim}, title = {Threshold extraction in metabolite concentration data}, year = {2003}, language = {en} } @article{NicolasSchaub1998, author = {Nicolas, Pascal and Schaub, Torsten H.}, title = {The XRay system : an implementation platform for local query-answering in default logics}, isbn = {3-540-65312-0}, year = {1998}, language = {en} } @article{DelgrandeSchaub2000, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {The role of default logic in knowledge representation}, isbn = {0-7923-7224-7}, year = {2000}, language = {en} } @article{GebserKaminskiKaufmannetal.2018, author = {Gebser, Martin and Kaminski, Roland and Kaufmann, Benjamin and L{\"u}hne, Patrick and Obermeier, Philipp and Ostrowski, Max and Romero Davila, Javier and Schaub, Torsten H. and Schellhorn, Sebastian and Wanko, Philipp}, title = {The Potsdam Answer Set Solving Collection 5.0}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0528-x}, pages = {181 -- 182}, year = {2018}, abstract = {The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems.}, language = {en} } @article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten H.}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten H.}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{GebserLiuNamasivayametal.2007, author = {Gebser, Martin and Liu, Lengning and Namasivayam, Gayathri and Neumann, Andr{\´e} and Schaub, Torsten H. and Truszczynski, Miroslaw}, title = {The first answer set programming system competition}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} }