@article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{AngerGebserJanhunenetal.2006, author = {Anger, Christian and Gebser, Martin and Janhunen, Tomi and Schaub, Torsten}, title = {What's a head without a body?}, year = {2006}, language = {en} } @article{AngerGebserSchaub2006, author = {Anger, Christian and Gebser, Martin and Schaub, Torsten}, title = {Approaching the core of unfounded sets}, year = {2006}, language = {en} } @article{GebserLeeLierler2007, author = {Gebser, Martin and Lee, Joohyung and Lierler, Yuliya}, title = {Head-elementary-set-free logic programs}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserSchaubThiele2007, author = {Gebser, Martin and Schaub, Torsten and Thiele, Sven}, title = {GrinGo : a new grounder for answer set programming}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{BrainGebserPuehreretal.2007, author = {Brain, Martin and Gebser, Martin and P{\"u}hrer, J{\"o}rg and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {Debugging ASP programs by means of ASP}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{BrainGebserPuehreretal.2007, author = {Brain, Martin and Gebser, Martin and P{\"u}hrer, J{\"o}rg and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {"That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description}, year = {2007}, language = {en} } @article{GebserKaufmannNeumannetal.2007, author = {Gebser, Martin and Kaufmann, Benjamin and Neumann, Andr{\´e} and Schaub, Torsten}, title = {Conflict-driven answer set enumeration}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserKaufmannNeumannetal.2007, author = {Gebser, Martin and Kaufmann, Benjamin and Neumann, Andr{\´e} and Schaub, Torsten}, title = {Conflict-driven answer set solving}, isbn = {978-1-57735-323-2}, year = {2007}, language = {en} } @article{GebserGharibSchaub2007, author = {Gebser, Martin and Gharib, Mona and Schaub, Torsten}, title = {Incremental answer sets and their computation}, year = {2007}, language = {en} } @article{GebserSchaub2007, author = {Gebser, Martin and Schaub, Torsten}, title = {Generic tableaux for answer set programming}, year = {2007}, language = {en} } @article{GebserLiuNamasivayametal.2007, author = {Gebser, Martin and Liu, Lengning and Namasivayam, Gayathri and Neumann, Andr{\´e} and Schaub, Torsten and Truszczynski, Miroslaw}, title = {The first answer set programming system competition}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserSchaubTompitsetal.2007, author = {Gebser, Martin and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report}, year = {2007}, language = {en} } @article{GebserKaufmannNeumannetal.2007, author = {Gebser, Martin and Kaufmann, Benjamin and Neumann, Andr{\´e} and Schaub, Torsten}, title = {Clasp : a conflict-driven answer set solver}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserGharibMerceretal.2009, author = {Gebser, Martin and Gharib, Mona and Mercer, Robert E. and Schaub, Torsten}, title = {Monotonic answer set programming}, issn = {0955-792X}, doi = {10.1093/logcom/exn040}, year = {2009}, abstract = {Answer set programming (ASP) does not allow for incrementally constructing answer sets or locally validating constructions like proofs by only looking at a part of the given program. In this article, we elaborate upon an alternative approach to ASP that allows for incremental constructions. Our approach draws its basic intuitions from the area of default logics. We investigate the feasibility of the concept of semi-monotonicity known from default logics as a basis of incrementality. On the one hand, every logic program has at least one answer set in our alternative setting, which moreover can be constructed incrementally based on generating rules. On the other hand, the approach may produce answer sets lacking characteristic properties of standard answer sets, such as being a model of the given program. We show how integrity constraints can be used to re-establish such properties, even up to correspondence with standard answer sets. Furthermore, we develop an SLD-like proof procedure for our incremental approach to ASP, which allows for query-oriented computations. Also, we provide a characterization of our definition of answer sets via a modification of Clarks completion. Based on this notion of program completion, we present an algorithm for computing the answer sets of a logic program in our approach.}, language = {en} } @article{GebserLeeLierler2011, author = {Gebser, Martin and Lee, Joohyung and Lierler, Yuliya}, title = {On elementary loops of logic programs}, series = {Theory and practice of logic programming}, volume = {11}, journal = {Theory and practice of logic programming}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068411000019}, pages = {953 -- 988}, year = {2011}, abstract = {Using the notion of an elementary loop, Gebser and Schaub (2005. Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'05), 53-65) refined the theorem on loop formulas attributable to Lin and Zhao (2004) by considering loop formulas of elementary loops only. In this paper, we reformulate the definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we also show that the corresponding problem is coNP-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs attributable to Ben-Eliyahu and Dechter (1994. Annals of Mathematics and Artificial Intelligence 12, 53-87). Like an Ha: program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body.}, language = {en} } @article{GebserSchaubThieleetal.2011, author = {Gebser, Martin and Schaub, Torsten and Thiele, Sven and Veber, Philippe}, title = {Detecting inconsistencies in large biological networks with answer set programming}, series = {Theory and practice of logic programming}, volume = {11}, journal = {Theory and practice of logic programming}, number = {5-6}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068410000554}, pages = {323 -- 360}, year = {2011}, abstract = {We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.}, language = {en} } @article{GebserKaminskiSchaub2011, author = {Gebser, Martin and Kaminski, Roland and Schaub, Torsten}, title = {Complex optimization in answer set programming}, series = {Theory and practice of logic programming}, volume = {11}, journal = {Theory and practice of logic programming}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068411000329}, pages = {821 -- 839}, year = {2011}, abstract = {Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications.}, language = {en} } @article{GebserKaufmannKaminskietal.2011, author = {Gebser, Martin and Kaufmann, Benjamin and Kaminski, Roland and Ostrowski, Max and Schaub, Torsten and Schneider, Marius}, title = {Potassco the Potsdam answer set solving collection}, series = {AI communications : AICOM ; the European journal on artificial intelligence}, volume = {24}, journal = {AI communications : AICOM ; the European journal on artificial intelligence}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {0921-7126}, doi = {10.3233/AIC-2011-0491}, pages = {107 -- 124}, year = {2011}, abstract = {This paper gives an overview of the open source project Potassco, the Potsdam Answer Set Solving Collection, bundling tools for Answer Set Programming developed at the University of Potsdam.}, language = {en} }