@article{PrasseKnaebelMachlicaetal.2019, author = {Prasse, Paul and Knaebel, Rene and Machlica, Lukas and Pevny, Tomas and Scheffer, Tobias}, title = {Joint detection of malicious domains and infected clients}, series = {Machine learning}, volume = {108}, journal = {Machine learning}, number = {8-9}, publisher = {Springer}, address = {Dordrecht}, issn = {0885-6125}, doi = {10.1007/s10994-019-05789-z}, pages = {1353 -- 1368}, year = {2019}, abstract = {Detection of malware-infected computers and detection of malicious web domains based on their encrypted HTTPS traffic are challenging problems, because only addresses, timestamps, and data volumes are observable. The detection problems are coupled, because infected clients tend to interact with malicious domains. Traffic data can be collected at a large scale, and antivirus tools can be used to identify infected clients in retrospect. Domains, by contrast, have to be labeled individually after forensic analysis. We explore transfer learning based on sluice networks; this allows the detection models to bootstrap each other. In a large-scale experimental study, we find that the model outperforms known reference models and detects previously unknown malware, previously unknown malware families, and previously unknown malicious domains.}, language = {en} } @article{CabalarFandinnoSchaubetal.2019, author = {Cabalar, Pedro and Fandinno, Jorge and Schaub, Torsten H. and Schellhorn, Sebastian}, title = {Gelfond-Zhang aggregates as propositional formulas}, series = {Artificial intelligence}, volume = {274}, journal = {Artificial intelligence}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0004-3702}, doi = {10.1016/j.artint.2018.10.007}, pages = {26 -- 43}, year = {2019}, abstract = {Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide.}, language = {en} } @article{AguadoCabalarFandinoetal.2019, author = {Aguado, Felicidad and Cabalar, Pedro and Fandi{\~n}o, Jorge and Pearce, David and Perez, Gilberto and Vidal-Peracho, Concepcion}, title = {Revisiting Explicit Negation in Answer Set Programming}, series = {Theory and practice of logic programming}, volume = {19}, journal = {Theory and practice of logic programming}, number = {5-6}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068419000267}, pages = {908 -- 924}, year = {2019}, language = {en} } @article{LaskovGehlKruegeretal.2006, author = {Laskov, Pavel and Gehl, Christian and Kr{\"u}ger, Stefan and M{\"u}ller, Klaus-Robert}, title = {Incremental support vector learning: analysis, implementation and applications}, series = {Journal of machine learning research}, volume = {7}, journal = {Journal of machine learning research}, publisher = {MIT Press}, address = {Cambridge, Mass.}, issn = {1532-4435}, pages = {1909 -- 1936}, year = {2006}, abstract = {Incremental Support Vector Machines (SVM) are instrumental in practical applications of online learning. This work focuses on the design and analysis of efficient incremental SVM learning, with the aim of providing a fast, numerically stable and robust implementation. A detailed analysis of convergence and of algorithmic complexity of incremental SVM learning is carried out. Based on this analysis, a new design of storage and numerical operations is proposed, which speeds up the training of an incremental SVM by a factor of 5 to 20. The performance of the new algorithm is demonstrated in two scenarios: learning with limited resources and active learning. Various applications of the algorithm, such as in drug discovery, online monitoring of industrial devices and and surveillance of network traffic, can be foreseen.}, language = {en} } @article{SteuerHumburgSelbig2006, author = {Steuer, Ralf and Humburg, Peter and Selbig, Joachim}, title = {Validation and functional annotation of expression-based clusters based on gene ontology}, series = {BMC bioinformatics}, volume = {7}, journal = {BMC bioinformatics}, number = {380}, publisher = {BioMed Central}, address = {London}, issn = {1471-2105}, doi = {10.1186/1471-2105-7-380}, pages = {12}, year = {2006}, abstract = {Background: The biological interpretation of large-scale gene expression data is one of the paramount challenges in current bioinformatics. In particular, placing the results in the context of other available functional genomics data, such as existing bio-ontologies, has already provided substantial improvement for detecting and categorizing genes of interest. One common approach is to look for functional annotations that are significantly enriched within a group or cluster of genes, as compared to a reference group. Results: In this work, we suggest the information-theoretic concept of mutual information to investigate the relationship between groups of genes, as given by data-driven clustering, and their respective functional categories. Drawing upon related approaches (Gibbons and Roth, Genome Research 12: 1574-1581, 2002), we seek to quantify to what extent individual attributes are sufficient to characterize a given group or cluster of genes. Conclusion: We show that the mutual information provides a systematic framework to assess the relationship between groups or clusters of genes and their functional annotations in a quantitative way. Within this framework, the mutual information allows us to address and incorporate several important issues, such as the interdependence of functional annotations and combinatorial combinations of attributes. It thus supplements and extends the conventional search for overrepresented attributes within a group or cluster of genes. In particular taking combinations of attributes into account, the mutual information opens the way to uncover specific functional descriptions of a group of genes or clustering result. All datasets and functional annotations used in this study are publicly available. All scripts used in the analysis are provided as additional files.}, language = {en} } @article{SarsakovSchaubTompitsetal.2004, author = {Sarsakov, Vladimir and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {A compiler for nested logic programming}, isbn = {3-540- 20721-x}, year = {2004}, language = {en} } @article{LinkeTompitsWoltran2004, author = {Linke, Thomas and Tompits, Hans and Woltran, Stefan}, title = {On Acyclic and head-cycle free nested logic programs}, isbn = {3-540-22671-01}, year = {2004}, language = {en} } @article{LinkeTompitsWoltran2004, author = {Linke, Thomas and Tompits, Hans and Woltran, Stefan}, title = {On acyclic and head-cycle free nested logic programs}, year = {2004}, language = {en} } @article{DelgrandeSchaubTompitsetal.2004, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {On Computing belief change operations using quantifield boolean formulas}, issn = {0955-792X}, year = {2004}, abstract = {In this paper, we show how an approach to belief revision and belief contraction can be axiomatized by means of quantified Boolean formulas. Specifically, we consider the approach of belief change scenarios, a general framework that has been introduced for expressing different forms of belief change. The essential idea is that for a belief change scenario (K, R, C), the set of formulas K, representing the knowledge base, is modified so that the sets of formulas R and C are respectively true in, and consistent with the result. By restricting the form of a belief change scenario, one obtains specific belief change operators including belief revision, contraction, update, and merging. For both the general approach and for specific operators, we give a quantified Boolean formula such that satisfying truth assignments to the free variables correspond to belief change extensions in the original approach. Hence, we reduce the problem of determining the results of a belief change operation to that of satisfiability. This approach has several benefits. First, it furnishes an axiomatic specification of belief change with respect to belief change scenarios. This then leads to further insight into the belief change framework. Second, this axiomatization allows us to identify strict complexity bounds for the considered reasoning tasks. Third, we have implemented these different forms of belief change by means of existing solvers for quantified Boolean formulas. As well, it appears that this approach may be straightforwardly applied to other specific approaches to belief change}, language = {en} } @article{DelgrandeSchaubTompitsetal.2001, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {On computing solutions to belief change scenarios}, isbn = {3-540- 42464-4}, year = {2001}, language = {en} } @article{PearceSarsakovSchaubetal.2002, author = {Pearce, David and Sarsakov, Vladimir and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {A polynomial translation of logic programs with nested expressions into disjunctive logic programs}, isbn = {3-540-43930-7}, year = {2002}, language = {en} } @article{BesnardSchaubTompitsetal.2002, author = {Besnard, Philippe and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {Paraconsistent reasoning via quantified boolean formulas}, isbn = {3-540-44190-5}, year = {2002}, language = {en} } @article{BrainGebserPuehreretal.2007, author = {Brain, Martin and Gebser, Martin and P{\"u}hrer, J{\"o}rg and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {"That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description}, year = {2007}, language = {en} } @article{PearceSarsakovSchaubetal.2002, author = {Pearce, David and Sarsakov, Vladimir and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {A polynomial translation of logic programs with nested expressions into disjunctive logic programs : preliminary report}, year = {2002}, language = {en} } @article{SchaubWoltran2018, author = {Schaub, Torsten H. and Woltran, Stefan}, title = {Answer set programming unleashed!}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0550-z}, pages = {105 -- 108}, year = {2018}, abstract = {Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92-103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem's specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP's modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53-68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)]}, language = {en} } @article{BesnardSchaubTompitsetal.2003, author = {Besnard, Philippe and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {Paraconsistent reasoning via quantified boolean formulas : Part II: Circumscribing inconsistent theories}, isbn = {3-540- 409494-5}, year = {2003}, language = {en} } @article{DelgrandeSchaubTompitsetal.2013, author = {Delgrande, James and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {A model-theoretic approach to belief change in answer set programming}, series = {ACM transactions on computational logic}, volume = {14}, journal = {ACM transactions on computational logic}, number = {2}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {1529-3785}, doi = {10.1145/2480759.2480766}, pages = {46}, year = {2013}, abstract = {We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs. We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision. We next consider approaches for merging a set of logic programs, P-1,...,P-n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P-i those models of P-i that vary the least from models of the other programs. The second approach informally selects those models of a program P-0 that are closest to the models of programs P-1,...,P-n. In this case, P-0 can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets. Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism.}, language = {en} } @article{BrainGebserPuehreretal.2007, author = {Brain, Martin and Gebser, Martin and P{\"u}hrer, J{\"o}rg and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {Debugging ASP programs by means of ASP}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserSchaubTompitsetal.2007, author = {Gebser, Martin and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report}, year = {2007}, language = {en} } @article{BordihnFernauHolzeretal.2006, author = {Bordihn, Henning and Fernau, Henning and Holzer, Markus and Manca, Vincenzo and Martin-Vide, Carlos}, title = {Iterated sequential transducers as language generating devices}, series = {Theoretical computer science}, volume = {369}, journal = {Theoretical computer science}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3975}, doi = {10.1016/j.tcs.2006.07.059}, pages = {67 -- 81}, year = {2006}, abstract = {Iterated finite state sequential transducers are considered as language generating devices. The hierarchy induced by the size of the state alphabet is proved to collapse to the fourth level. The corresponding language families are related to the families of languages generated by Lindenmayer systems and Chomsky grammars. Finally, some results on deterministic and extended iterated finite state transducers are established.}, language = {en} } @article{StoffelKunzGerber1997, author = {Stoffel, Dominik and Kunz, Wolfgang and Gerber, Stefan}, title = {And/Or reasoning graphs for determining prime implicants in multi-level combinational networks}, year = {1997}, language = {en} } @article{GerberGoessel1994, author = {Gerber, Stefan and G{\"o}ssel, Michael}, title = {Detection of permanent faults of a floating point adder by pseudoduplication}, year = {1994}, language = {en} } @article{BaierDiCiccioMendlingetal.2018, author = {Baier, Thomas and Di Ciccio, Claudio and Mendling, Jan and Weske, Mathias}, title = {Matching events and activities by integrating behavioral aspects and label analysis}, series = {Software and systems modeling}, volume = {17}, journal = {Software and systems modeling}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-017-0603-z}, pages = {573 -- 598}, year = {2018}, abstract = {Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs.}, language = {en} } @article{PrzybyllaRomeike2018, author = {Przybylla, Mareen and Romeike, Ralf}, title = {Empowering learners with tools in CS education}, series = {it - Information Technology}, volume = {60}, journal = {it - Information Technology}, number = {2}, publisher = {De Gruyter}, address = {Berlin}, issn = {1611-2776}, doi = {10.1515/itit-2017-0032}, pages = {91 -- 101}, year = {2018}, abstract = {In computer science, computer systems are both, objects of investigation and tools that enable creative learning and design. Tools for learning have a long tradition in computer science education. Already in the late 1960s, Papert developed a concept which had an immense impact on the development of informal education in the following years: his theory of constructionism understands learning as a creative process of knowledge construction that is most effective when learners create something purposeful that they can try out, show around, discuss, analyse and receive praise for. By now, there are numerous learning and programming environments that are based on the constructionist ideas. Modern tools offer opportunities for students to learn in motivating ways and gain impressive results in programming games, animations, implementing 3D models or developing interactive objects. This article gives an overview of computer science education research related to tools and media to be used in educational settings. We analyse different types of tools with a special focus on the categorization and development of tools for student adequate physical computing activities in the classroom. Research around the development and evaluation of tools and learning resources in the domain of physical computing is illustrated with the example of "My Interactive Garden", a constructionist learning and programming environment. It is explained how the results from empirical studies are integrated in the continuous development of the learning material.}, language = {en} } @article{LyTarkhanov2009, author = {Ly, Ibrahim and Tarkhanov, Nikolai Nikolaevich}, title = {A variational approach to the Cauchy problem for nonlinear elliptic differential equations}, issn = {0928-0219}, doi = {10.1515/Jiip.2009.037}, year = {2009}, abstract = {We discuss the relaxation of a class of nonlinear elliptic Cauchy problems with data on a piece S of the boundary surface by means of a variational approach known in the optimal control literature as "equation error method". By the Cauchy problem is meant any boundary value problem for an unknown function y in a domain X with the property that the data on S, if combined with the differential equations in X, allow one to determine all derivatives of y on S by means of functional equations. In the case of real analytic data of the Cauchy problem, the existence of a local solution near S is guaranteed by the Cauchy-Kovalevskaya theorem. We also admit overdetermined elliptic systems, in which case the set of those Cauchy data on S for which the Cauchy problem is solvable is very "thin". For this reason we discuss a variational setting of the Cauchy problem which always possesses a generalised solution.}, language = {en} } @article{PrasseIversenLienhardetal.2022, author = {Prasse, Paul and Iversen, Pascal and Lienhard, Matthias and Thedinga, Kristina and Herwig, Ralf and Scheffer, Tobias}, title = {Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction}, series = {MDPI}, volume = {14}, journal = {MDPI}, edition = {16}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2072-6694}, doi = {10.3390/cancers14163950}, pages = {1 -- 14}, year = {2022}, abstract = {Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models' accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases.}, language = {en} } @article{EverardoPerezOsorio2020, author = {Everardo P{\´e}rez, Flavio Omar and Osorio, Mauricio}, title = {Towards an answer set programming methodology for constructing programs following a semi-automatic approach}, series = {Electronic notes in theoretical computer science}, volume = {354}, journal = {Electronic notes in theoretical computer science}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1571-0661}, doi = {10.1016/j.entcs.2020.10.004}, pages = {29 -- 44}, year = {2020}, abstract = {Answer Set Programming (ASP) is a successful rule-based formalism for modeling and solving knowledge-intense combinatorial (optimization) problems. Despite its success in both academic and industry, open challenges like automatic source code optimization, and software engineering remains. This is because a problem encoded into an ASP might not have the desired solving performance compared to an equivalent representation. Motivated by these two challenges, this paper has three main contributions. First, we propose a developing process towards a methodology to implement ASP programs, being faithful to existing methods. Second, we present ASP encodings that serve as the basis from the developing process. Third, we demonstrate the use of ASP to reverse the standard solving process. That is, knowing answer sets in advance, and desired strong equivalent properties, "we" exhaustively reconstruct ASP programs if they exist. This paper was originally motivated by the search of propositional formulas (if they exist) that represent the semantics of a new aggregate operator. Particularly, a parity aggregate. This aggregate comes as an improvement from the already existing parity (xor) constraints from xorro, where lacks expressiveness, even though these constraints fit perfectly for reasoning modes like sampling or model counting. To this end, this extended version covers the fundaments from parity constraints as well as the xorro system. Hence, we delve a little more in the examples and the proposed methodology over parity constraints. Finally, we discuss our results by showing the only representation available, that satisfies different properties from the classical logic xor operator, which is also consistent with the semantics of parity constraints from xorro.}, language = {en} } @article{OcheretnijGoesselSogomonyanetal.2006, author = {Ocheretnij, Vitalij and G{\"o}ssel, Michael and Sogomonyan, Egor S. and Marienfeld, Daniel}, title = {Modulo p=3 checking for a carry select adder}, doi = {10.1007/s10836-006-6260-8}, year = {2006}, abstract = {In this paper a self-checking carry select adder is proposed. The duplicated adder blocks which are inherent to a carry select adder without error detection are checked modulo 3. Compared to a carry select adder without error detection the delay of the MSB of the sum of the proposed adder does not increase. Compared to a self-checking duplicated carry select adder the area is reduced by 20\%. No restrictions are imposed on the design of the adder blocks}, language = {en} } @article{SinghSogomonyanGoesseletal.1999, author = {Singh, Adit D. and Sogomonyan, Egor S. and G{\"o}ssel, Michael and Seuring, Markus}, title = {Testability evaluation of sequential designs incorporating the multi-mode scannable memory element}, year = {1999}, language = {en} } @article{DimitrievSaposhnikovSaposhnikovetal.1999, author = {Dimitriev, Alexej and Saposhnikov, V. V. and Saposhnikov, Vl. V. and G{\"o}ssel, Michael}, title = {Concurrent checking of sequential circuits by alternating inputs}, year = {1999}, language = {en} } @article{OtscheretnijSaposhnikovSaposhnikovetal.1999, author = {Otscheretnij, Vitalij and Saposhnikov, Vl. V. and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Fault-tolerant self-dual circuits}, year = {1999}, language = {en} } @article{SaposhnikovMoshaninSaposhnikovetal.1999, author = {Saposhnikov, Vl. V. V. V. and Moshanin, Vl. and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Experimental results for self-dual multi-output combinational circuits}, year = {1999}, language = {en} } @article{SaposhnikovSaposhnikovGoesseletal.1999, author = {Saposhnikov, V. V. and Saposhnikov, Vl. V. and G{\"o}ssel, Michael and Morosov, Andrej}, title = {A method of construction of combinational self-checking units with detection of all single faults}, year = {1999}, language = {en} } @article{SaposhnikovOcheretnijSaposhnikovetal.1999, author = {Saposhnikov, Vl. V. and Ocheretnij, V. and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Modified TMR-system with reduced hardware overhead}, year = {1999}, language = {en} } @article{GoesselSogomonyan1999, author = {G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {New totally self-checking ripple and carry look-ahead adders}, year = {1999}, language = {en} } @article{SaposhnikovMorosovSaposhnikovetal.1998, author = {Saposhnikov, V. V. and Morosov, Andrej and Saposhnikov, Vl. V. and G{\"o}ssel, Michael}, title = {A new design method for self-checking unidirectional combinational circuits}, year = {1998}, language = {en} } @article{GoesselSogomonyanMorosov1999, author = {G{\"o}ssel, Michael and Sogomonyan, Egor S. and Morosov, Andrej}, title = {A new totally error propagating compactor for arbitrary cores with digital interfaces}, year = {1999}, language = {en} } @article{SeuringGoessel1999, author = {Seuring, Markus and G{\"o}ssel, Michael}, title = {A structural approach for space compaction for sequential circuits}, year = {1999}, language = {en} } @article{MorosovGoesselHartje1999, author = {Morosov, Andrej and G{\"o}ssel, Michael and Hartje, Hendrik}, title = {Reduced area overhead of the input party for code-disjoint circuits}, year = {1999}, language = {en} } @article{SeuringGoessel1999, author = {Seuring, Markus and G{\"o}ssel, Michael}, title = {A structural method for output compaction of sequential automata implemented as circuits}, year = {1999}, language = {en} } @article{MorosovSaposhnikovGoessel1998, author = {Morosov, Andrej and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Self-Checking circuits with unidiectionally independent outputs}, year = {1998}, language = {en} } @article{HlawiczkaGoesselSogomonyan1997, author = {Hlawiczka, A. and G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {A linear code-preserving signature analyzer COPMISR}, isbn = {0-8186-7810-0}, year = {1997}, language = {en} } @article{SaposhnikovOtscheretnijSaposhnikovetal.1998, author = {Saposhnikov, Vl. V. and Otscheretnij, Vitalij and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Design of Fault-Tolerant Circuits by self-dual Duplication}, year = {1998}, language = {en} } @article{BogueGoesselJuergensenetal.1998, author = {Bogue, Ted and G{\"o}ssel, Michael and J{\"u}rgensen, Helmut and Zorian, Yervant}, title = {Built-in self-Test with an alternating output}, isbn = {0-8186-8359-7}, year = {1998}, language = {en} } @article{OtscheretnijGoesselSaposhnikovetal.1998, author = {Otscheretnij, Vitalij and G{\"o}ssel, Michael and Saposhnikov, Vl. V. and Saposhnikov, V. V.}, title = {Fault-tolerant self-dual circuits with error detection by parity- and group parity prediction}, year = {1998}, language = {en} } @article{SogomonyanSinghGoessel1998, author = {Sogomonyan, Egor S. and Singh, Adit D. and G{\"o}ssel, Michael}, title = {A multi-mode scannable memory element for high test application efficiency and delay testing}, year = {1998}, language = {en} } @article{SeuringGoesselSogomonyan1998, author = {Seuring, Markus and G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {A structural approach for space compaction for concurrent checking and BIST}, year = {1998}, language = {en} } @article{SaposhnikovSaposhnikovDimitrievetal.1998, author = {Saposhnikov, Vl. V. and Saposhnikov, V. V. and Dimitriev, Alexej and G{\"o}ssel, Michael}, title = {Self-dual duplication for error detection}, year = {1998}, language = {en} } @article{SogomonyanSinghGoessel1998, author = {Sogomonyan, Egor S. and Singh, Adit D. and G{\"o}ssel, Michael}, title = {A scan based concrrent BIST approach for low cost on-line testing}, year = {1998}, language = {en} } @article{HartjeGoesselSogomonyan1997, author = {Hartje, Hendrik and G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {Synthesis of code-disjoint combinational circuits}, year = {1997}, language = {en} } @article{SaposhnikovMorosovSaposhnikovetal.1996, author = {Saposhnikov, Va. V. and Morosov, Andrej and Saposhnikov, Vl. V. and G{\"o}ssel, Michael}, title = {Design of self-checking unidirectional combinational circuits with low area overhead}, year = {1996}, language = {en} } @article{DimitrievSaposhnikovGoesseletal.1997, author = {Dimitriev, Alexej and Saposhnikov, Vl. V. and G{\"o}ssel, Michael and Saposhnikov, V. V.}, title = {On-line testing by self-dual duplication}, year = {1997}, language = {en} } @article{DimitrievSaposhnikovGoesseletal.1997, author = {Dimitriev, Alexej and Saposhnikov, Vl. V. and G{\"o}ssel, Michael and Saposhnikov, V. V.}, title = {Self-dual duplication - a new method for on-line testing}, year = {1997}, language = {en} } @article{SaposhnikovMoshaninSaposhnikovetal.1997, author = {Saposhnikov, Vl. V. and Moshanin, Vl. and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Self-dual multi output combinational circuits with output data compaction}, year = {1997}, language = {en} } @article{MorosovSaposhnikovSaposhnikovetal.1997, author = {Morosov, Andrej and Saposhnikov, Vl. V. and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Design of self dual fault-secure combinational circuits}, year = {1997}, language = {en} } @article{HartjeSogomonyanGoessel1997, author = {Hartje, Hendrik and Sogomonyan, Egor S. and G{\"o}ssel, Michael}, title = {Code disjoint circuits for partity codes}, year = {1997}, language = {en} } @article{MoschaninSaposhnikovSaposhnikovetal.1996, author = {Moschanin, Wladimir and Saposhnikov, Vl. V. and Saposhnikov, Va. V. and G{\"o}ssel, Michael}, title = {Synthesis of self-dual multi-output combinational circuits for on-line Teting}, year = {1996}, language = {en} } @article{SaposhnikovDimitrievGoesseletal.1996, author = {Saposhnikov, Vl. V. and Dimitriev, Alexej and G{\"o}ssel, Michael and Saposhnikov, Va. V.}, title = {Self-dual parity checking - a new method for on-line testing}, year = {1996}, language = {en} } @article{GoesselSogomonyan1996, author = {G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {A new self-testing parity checker for ultra-reliable applications}, year = {1996}, language = {en} } @article{SogomonyanGoessel1996, author = {Sogomonyan, Egor S. and G{\"o}ssel, Michael}, title = {Concurrently self-testing embedded checkers for ultra-reliable fault-tolerant systems}, year = {1996}, language = {en} } @article{GoesselSogomonyan1996, author = {G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {A parity-preserving multi-input signature analyzer and it application for concurrent checking and BIST}, year = {1996}, language = {en} } @article{GoesselSogomonyan1994, author = {G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {Self-parity combinational-circuits for self-testing, concurrent fault-detection and parity scan design}, year = {1994}, language = {en} } @article{SogomonyanGoessel1995, author = {Sogomonyan, Egor S. and G{\"o}ssel, Michael}, title = {A new parity preserving multi-input signature analyser}, year = {1995}, language = {en} } @article{KunduSogomonyanGoesseletal.1996, author = {Kundu, S. and Sogomonyan, Egor S. and G{\"o}ssel, Michael and Tarnick, Steffen}, title = {Self-checking comparator with one periodiv output}, year = {1996}, language = {en} } @article{BogueJuergensenGoessel1995, author = {Bogue, Ted and J{\"u}rgensen, Helmut and G{\"o}ssel, Michael}, title = {BIST with negligible aliasing through random cover circuits}, year = {1995}, language = {en} } @article{RabenaltRichterPoehletal.2012, author = {Rabenalt, Thomas and Richter, Michael and P{\"o}hl, Frank and G{\"o}ssel, Michael}, title = {Highly efficient test response compaction using a hierarchical x-masking technique}, series = {IEEE transactions on computer-aided design of integrated circuits and systems}, volume = {31}, journal = {IEEE transactions on computer-aided design of integrated circuits and systems}, number = {6}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0278-0070}, doi = {10.1109/TCAD.2011.2181847}, pages = {950 -- 957}, year = {2012}, abstract = {This paper presents a highly effective compactor architecture for processing test responses with a high percentage of x-values. The key component is a hierarchical configurable masking register, which allows the compactor to dynamically adapt to and provide excellent performance over a wide range of x-densities. A major contribution of this paper is a technique that enables the efficient loading of the x-masking data into the masking logic in a parallel fashion using the scan chains. A method for eliminating the requirement for dedicated mask control signals using automated test equipment timing flexibility is also presented. The proposed compactor is especially suited to multisite testing. Experiments with industrial designs show that the proposed compactor enables compaction ratios exceeding 200x.}, language = {en} } @article{HilscherBraunRichteretal.2009, author = {Hilscher, Martin and Braun, Michael and Richter, Michael and Leininger, Andreas and G{\"o}ssel, Michael}, title = {X-tolerant test data compaction with accelerated shift registers}, issn = {0923-8174}, doi = {10.1007/s10836-009-5107-5}, year = {2009}, abstract = {Using the timing flexibility of modern automatic test equipment (ATE) test response data can be compacted without the need for additional X-masking logic. In this article the test response is compacted by several multiple input shift registers without feedback (NF-MISR). The shift registers are running on a k-times higher clock frequency than the test clock. For each test clock cycle only one out of the k outputs of each shift register is evaluated by the ATE. The impact of consecutive X values within the scan chains is reduced by a periodic permutation of the NF-MISR inputs. As a result, no additional external control signals or test set dependent control logic is required. The benefits of the proposed method are shown by the example of an implementation on a Verigy ATE. Experiments on three industrial circuits demonstrate the effectiveness of the proposed approach in comparison to a commercial DFT solution.}, language = {en} } @article{BogueJuergensenGoessel1994, author = {Bogue, Ted and J{\"u}rgensen, Helmut and G{\"o}ssel, Michael}, title = {Design of cover circuits for monitoring the output of a MISR}, isbn = {0-8186-6307-3 , 0-8186-6306-5}, year = {1994}, language = {en} } @article{GoesselSogomonyan1994, author = {G{\"o}ssel, Michael and Sogomonyan, Egor S.}, title = {Code disjoint self-parity combinational circuits for self-testing, concurrent fault detection and parity scan design}, year = {1994}, language = {en} } @article{GoesselMorosovSaposhnikovetal.1994, author = {G{\"o}ssel, Michael and Morosov, Andrej and Saposhnikov, V. V. and Saposhnikov, VL. V.}, title = {Design of combinational self-testing devices with unidirectionally independent outputs}, year = {1994}, language = {en} } @article{Teske2014, author = {Teske, Daniel}, title = {Geocoder accuracy ranking}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {161 -- 174}, year = {2014}, abstract = {Finding an address on a map is sometimes tricky: the chosen map application may be unfamiliar with the enclosed region. There are several geocoders on the market, they have different databases and algorithms to compute the query. Consequently, the geocoding results differ in their quality. Fortunately the geocoders provide a rich set of metadata. The workflow described in this paper compares this metadata with the aim to find out which geocoder is offering the best-fitting coordinate for a given address.}, language = {en} } @article{Sens2014, author = {Sens, Henriette}, title = {Web-Based map generalization tools put to the test: a jABC workflow}, series = {Process Design for Natural Scientists: an agile model-driven approach}, journal = {Process Design for Natural Scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {175 -- 185}, year = {2014}, abstract = {Geometric generalization is a fundamental concept in the digital mapping process. An increasing amount of spatial data is provided on the web as well as a range of tools to process it. This jABC workflow is used for the automatic testing of web-based generalization services like mapshaper.org by executing its functionality, overlaying both datasets before and after the transformation and displaying them visually in a .tif file. Mostly Web Services and command line tools are used to build an environment where ESRI shapefiles can be uploaded, processed through a chosen generalization service and finally visualized in Irfanview.}, language = {en} } @article{Noack2014, author = {Noack, Franziska}, title = {CREADED: Colored-Relief application for digital elevation data}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {186 -- 199}, year = {2014}, abstract = {In the geoinformatics field, remote sensing data is often used for analyzing the characteristics of the current investigation area. This includes DEMs, which are simple raster grids containing grey scales representing the respective elevation values. The project CREADED that is presented in this paper aims at making these monochrome raster images more significant and more intuitively interpretable. For this purpose, an executable interactive model for creating a colored and relief-shaded Digital Elevation Model (DEM) has been designed using the jABC framework. The process is based on standard jABC-SIBs and SIBs that provide specific GIS functions, which are available as Web services, command line tools and scripts.}, language = {en} } @article{Respondek2014, author = {Respondek, Tobias}, title = {A workflow for computing potential areas for wind turbines}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, pages = {200 -- 215}, year = {2014}, abstract = {This paper describes the implementation of a workflow model for service-oriented computing of potential areas for wind turbines in jABC. By implementing a re-executable model the manual effort of a multi-criteria site analysis can be reduced. The aim is to determine the shift of typical geoprocessing tools of geographic information systems (GIS) from the desktop to the web. The analysis is based on a vector data set and mainly uses web services of the "Center for Spatial Information Science and Systems" (CSISS). This paper discusses effort, benefits and problems associated with the use of the web services.}, language = {en} } @article{Scheele2014, author = {Scheele, Lasse}, title = {Location analysis for placing artificial reefs}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {216 -- 228}, year = {2014}, abstract = {Location analyses are among the most common tasks while working with spatial data and geographic information systems. Automating the most frequently used procedures is therefore an important aspect of improving their usability. In this context, this project aims to design and implement a workflow, providing some basic tools for a location analysis. For the implementation with jABC, the workflow was applied to the problem of finding a suitable location for placing an artificial reef. For this analysis three parameters (bathymetry, slope and grain size of the ground material) were taken into account, processed, and visualized with the The Generic Mapping Tools (GMT), which were integrated into the workflow as jETI-SIBs. The implemented workflow thereby showed that the approach to combine jABC with GMT resulted in an user-centric yet user-friendly tool with high-quality cartographic outputs.}, language = {en} } @article{Holler2014, author = {Holler, Robin}, title = {GraffDok - a graffiti documentation application}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {239 -- 251}, year = {2014}, abstract = {GraffDok is an application helping to maintain an overview over sprayed images somewhere in a city. At the time of writing it aims at vandalism rather than at beautiful photographic graffiti in an underpass. Looking at hundreds of tags and scribbles on monuments, house walls, etc. it would be interesting to not only record them in writing but even make them accessible electronically, including images. GraffDok's workflow is simple and only requires an EXIF-GPS-tagged photograph of a graffito. It automatically determines its location by using reverse geocoding with the given GPS-coordinates and the Gisgraphy WebService. While asking the user for some more meta data, GraffDok analyses the image in parallel with this and tries to detect fore- and background - before extracting the drawing lines and make them stand alone. The command line based tool ImageMagick is used here as well as for accessing EXIF data. Any meta data is written to csv-files, which will stay easily accessible and can be integrated in TeX-files as well. The latter ones are converted to PDF at the end of the workflow, containing a table about all graffiti and a summary for each - including the generated characteristic graffiti pattern image.}, language = {en} } @article{Reso2014, author = {Reso, Judith}, title = {Protein Classification Workflow}, series = {Process Design for Natural Scientists: an agile model-driven approach}, journal = {Process Design for Natural Scientists: an agile model-driven approach}, number = {500}, editor = {Lambrecht, Anna-Lena and Margaria, Tiziana}, publisher = {Springer Verlag}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {65 -- 72}, year = {2014}, abstract = {The protein classification workflow described in this report enables users to get information about a novel protein sequence automatically. The information is derived by different bioinformatic analysis tools which calculate or predict features of a protein sequence. Also, databases are used to compare the novel sequence with known proteins.}, language = {en} } @article{Schulze2014, author = {Schulze, Gunnar}, title = {Workflow for rapid metagenome analysis}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {88 -- 100}, year = {2014}, abstract = {Analyses of metagenomes in life sciences present new opportunities as well as challenges to the scientific community and call for advanced computational methods and workflows. The large amount of data collected from samples via next-generation sequencing (NGS) technologies render manual approaches to sequence comparison and annotation unsuitable. Rather, fast and efficient computational pipelines are needed to provide comprehensive statistics and summaries and enable the researcher to choose appropriate tools for more specific analyses. The workflow presented here builds upon previous pipelines designed for automated clustering and annotation of raw sequence reads obtained from next-generation sequencing technologies such as 454 and Illumina. Employing specialized algorithms, the sequence reads are processed at three different levels. First, raw reads are clustered at high similarity cutoff to yield clusters which can be exported as multifasta files for further analyses. Independently, open reading frames (ORFs) are predicted from raw reads and clustered at two strictness levels to yield sets of non-redundant sequences and ORF families. Furthermore, single ORFs are annotated by performing searches against the Pfam database}, language = {en} } @article{Vierheller2014, author = {Vierheller, Janine}, title = {Exploratory Data Analysis}, series = {Process Design for Natural Scientists: an agile model-driven approach}, journal = {Process Design for Natural Scientists: an agile model-driven approach}, number = {500}, editor = {Lambrecht, Anna-Lena and Margaria, Tiziana}, publisher = {Axel Springer Verlag}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {110 -- 126}, year = {2014}, abstract = {In bioinformatics the term exploratory data analysis refers to different methods to get an overview of large biological data sets. Hence, it helps to create a framework for further analysis and hypothesis testing. The workflow facilitates this first important step of the data analysis created by high-throughput technologies. The results are different plots showing the structure of the measurements. The goal of the workflow is the automatization of the exploratory data analysis, but also the flexibility should be guaranteed. The basic tool is the free software R.}, language = {en} } @article{Schuett2014, author = {Sch{\"u}tt, Christine}, title = {Identification of differentially expressed genes}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {127 -- 139}, year = {2014}, abstract = {With the jABC it is possible to realize workflows for numerous questions in different fields. The goal of this project was to create a workflow for the identification of differentially expressed genes. This is of special interest in biology, for it gives the opportunity to get a better insight in cellular changes due to exogenous stress, diseases and so on. With the knowledge that can be derived from the differentially expressed genes in diseased tissues, it becomes possible to find new targets for treatment.}, language = {en} } @article{Kuntzsch2014, author = {Kuntzsch, Christian}, title = {Visualization of data transfer paths}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {140 -- 148}, year = {2014}, abstract = {A workflow for visualizing server connections using the Google Maps API was built in the jABC. It makes use of three basic services: An XML-based IP address geolocation web service, a command line tool and the Static Maps API. The result of the workflow is an URL leading to an image file of a map, showing server connections between a client and a target host.}, language = {en} } @article{Hibbe2014, author = {Hibbe, Marcel}, title = {Spotlocator - Guess Where the Photo Was Taken!}, series = {Process Design for Natural Scientists: an agile model-driven approach}, journal = {Process Design for Natural Scientists: an agile model-driven approach}, number = {500}, editor = {Lambrecht, Anna-Lena and Margaria, Tiziana}, publisher = {Springer Verlag}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {149 -- 160}, year = {2014}, abstract = {Spotlocator is a game wherein people have to guess the spots of where photos were taken. The photos of a defined area for each game are from panoramio.com. They are published at http://spotlocator. drupalgardens.com with an ID. Everyone can guess the photo spots by sending a special tweet via Twitter that contains the hashtag \#spotlocator, the guessed coordinates and the ID of the photo. An evaluation is published for all tweets. The players are informed about the distance to the real photo spots and the positions are shown on a map.}, language = {en} } @article{Blaese2014, author = {Blaese, Leif}, title = {Data mining for unidentified protein squences}, series = {Process design for natural scientists: an agile model-driven approach}, journal = {Process design for natural scientists: an agile model-driven approach}, number = {500}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {73 -- 87}, year = {2014}, abstract = {Through the use of next generation sequencing (NGS) technology, a lot of newly sequenced organisms are now available. Annotating those genes is one of the most challenging tasks in sequence biology. Here, we present an automated workflow to find homologue proteins, annotate sequences according to function and create a three-dimensional model.}, language = {en} } @article{Lis2014, author = {Lis, Monika}, title = {Constructing a Phylogenetic Tree}, series = {Process Design for Natural Scientists: an agile model-driven approach}, journal = {Process Design for Natural Scientists: an agile model-driven approach}, number = {500}, editor = {Lambrecht, Anna-Lena and Margaria, Tiziana}, publisher = {Springer Verlag}, address = {Berlin}, isbn = {978-3-662-45005-5}, issn = {1865-0929}, pages = {101 -- 109}, year = {2014}, abstract = {In this project I constructed a workflow that takes a DNA sequence as input and provides a phylogenetic tree, consisting of the input sequence and other sequences which were found during a database search. In this phylogenetic tree the sequences are arranged depending on similarities. In bioinformatics, constructing phylogenetic trees is often used to explore the evolutionary relationships of genes or organisms and to understand the mechanisms of evolution itself.}, language = {en} } @article{GrellSchaubSelbig2006, author = {Grell, Susanne and Schaub, Torsten H. and Selbig, Joachim}, title = {Modelling biological networks by action languages via set programming}, issn = {0302-9743}, doi = {10.1007/11799573}, year = {2006}, language = {en} } @article{DelgrandeSchaubTompits2006, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans}, title = {A Preference-Based Framework for Updating logic Programs : preliminary reports}, year = {2006}, language = {en} } @article{GressmannJanhunenMerceretal.2006, author = {Gressmann, Jean and Janhunen, Tomi and Mercer, Robert E. and Schaub, Torsten H. and Thiele, Sven and Tichy, Richard}, title = {On probing and multi-threading in platypus}, year = {2006}, language = {en} } @article{AngerGebserSchaub2006, author = {Anger, Christian and Gebser, Martin and Schaub, Torsten H.}, title = {Approaching the core of unfounded sets}, year = {2006}, language = {en} } @article{ShenoyKrauledatBlankertzetal.2006, author = {Shenoy, Pradeep and Krauledat, Matthias and Blankertz, Benjamin and Rao, Rajesh P. N. and M{\"u}ller, Klaus-Robert}, title = {Towards adaptive classification for BCI}, doi = {10.1088/1741-2560/3/1/R02}, year = {2006}, abstract = {Non-stationarities are ubiquitous in EEG signals. They are especially apparent in the use of EEG-based brain- computer interfaces (BCIs): (a) in the differences between the initial calibration measurement and the online operation of a BCI, or (b) caused by changes in the subject's brain processes during an experiment (e.g. due to fatigue, change of task involvement, etc). In this paper, we quantify for the first time such systematic evidence of statistical differences in data recorded during offline and online sessions. Furthermore, we propose novel techniques of investigating and visualizing data distributions, which are particularly useful for the analysis of (non-) stationarities. Our study shows that the brain signals used for control can change substantially from the offline calibration sessions to online control, and also within a single session. In addition to this general characterization of the signals, we propose several adaptive classification schemes and study their performance on data recorded during online experiments. An encouraging result of our study is that surprisingly simple adaptive methods in combination with an offline feature selection scheme can significantly increase BCI performance}, language = {en} } @article{Bobda2009, author = {Bobda, Christophe}, title = {Special issue on ReCoSoC 2007 : editorial}, issn = {0141-9331}, doi = {10.1016/j.micpro.2009.01.001}, year = {2009}, language = {en} } @article{BlankertzDornhegeKrauledatetal.2006, author = {Blankertz, Benjamin and Dornhege, Guido and Krauledat, Matthias and M{\"u}ller, Klaus-Robert and Kunzmann, Volker and Losch, Florian and Curio, Gabriel}, title = {The Berlin brain-computer interface : EEG-based communication without subject training}, issn = {1534-4320}, doi = {10.1109/Tnsre.2006.875557}, year = {2006}, abstract = {The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left-versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems}, language = {en} } @article{WilligMitschke2006, author = {Willig, Andreas and Mitschke, Robert}, title = {Results of bit error measurements with sensor nodes and casuistic consequences for design of energy-efficient error control schemes}, isbn = {978-3-540-32158-3}, year = {2006}, abstract = {For the proper design of energy-efficient error control schemes some insight into channel error patterns is needed. This paper presents bit error and packet loss measurements taken with sensor nodes running the popular RFM}, language = {en} } @article{RozinatVanderAalst2006, author = {Rozinat, A and Van der Aalst, Wil M. P.}, title = {Conformance testing: Measuring the fit and appropriateness of event logs and process models}, year = {2006}, abstract = {Most information systems log events (e.g., transaction logs, audit traits) to audit and monitor the processes they support. At the same time, many of these processes have been explicitly modeled. For example, SAP R/3 logs events in transaction logs and there are EPCs (Event-driven Process Chains) describing the so-called reference models. These reference models describe how the system should be used. The coexistence of event logs and process models raises an interesting question: "Does the event log conform to the process model and vice versa?". This paper demonstrates that there is not a simple answer to this question. To tackle the problem, we distinguish two dimensions of conformance: fitness (the event log may be the result of the process modeled) and appropriateness (the model is a likely candidate from a structural and behavioral point of view). Different metrics have been defined and a Conformance Checker has been implemented within the ProM Framework}, language = {en} } @article{GerbserSchaub2006, author = {Gerbser, Martin and Schaub, Torsten H.}, title = {Tableau calculi for answer set programming}, issn = {0302-9743}, doi = {10.1007/11799573}, year = {2006}, language = {en} } @article{Konczak2006, author = {Konczak, Kathrin}, title = {Voting Theory in Answer Set Programming}, year = {2006}, language = {en} } @article{AngerGebserJanhunenetal.2006, author = {Anger, Christian and Gebser, Martin and Janhunen, Tomi and Schaub, Torsten H.}, title = {What's a head without a body?}, year = {2006}, language = {en} } @article{GerbserLeeLierler2006, author = {Gerbser, Martin and Lee, Joohyung and Lierler, Yuliya}, title = {Elementary sets for logic programs}, isbn = {978-1-57735-281-5}, year = {2006}, language = {en} } @article{GerbserSchaub2006, author = {Gerbser, Martin and Schaub, Torsten H.}, title = {Characterizing (ASP) inferences by unit propagation}, year = {2006}, language = {en} } @article{Konczak2006, author = {Konczak, Kathrin}, title = {Weak order equivalence for Logic Programs with Prefernces}, year = {2006}, language = {en} } @article{DelgrandeSchaubTompits2007, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans}, title = {A preference-based framework for updating logic programs}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} }