@misc{FrankKreitz2018, author = {Frank, Mario and Kreitz, Christoph}, title = {A theorem prover for scientific and educational purposes}, series = {Electronic proceedings in theoretical computer science}, journal = {Electronic proceedings in theoretical computer science}, number = {267}, publisher = {Open Publishing Association}, address = {Sydney}, issn = {2075-2180}, doi = {10.4204/EPTCS.267.4}, pages = {59 -- 69}, year = {2018}, abstract = {We present a prototype of an integrated reasoning environment for educational purposes. The presented tool is a fragment of a proof assistant and automated theorem prover. We describe the existing and planned functionality of the theorem prover and especially the functionality of the educational fragment. This currently supports working with terms of the untyped lambda calculus and addresses both undergraduate students and researchers. We show how the tool can be used to support the students' understanding of functional programming and discuss general problems related to the process of building theorem proving software that aims at supporting both research and education.}, language = {en} } @misc{XenikoudakisAhmedHarrisetal.2020, author = {Xenikoudakis, Georgios and Ahmed, Mayeesha and Harris, Jacob Colt and Wadleigh, Rachel and Paijmans, Johanna L. A. and Hartmann, Stefanie and Barlow, Axel and Lerner, Heather and Hofreiter, Michael}, title = {Ancient DNA reveals twenty million years of aquatic life in beavers}, series = {Current biology : CB}, volume = {30}, journal = {Current biology : CB}, number = {3}, publisher = {Current Biology Ltd.}, address = {London}, issn = {0960-9822}, doi = {10.1016/j.cub.2019.12.041}, pages = {R110 -- R111}, year = {2020}, abstract = {Xenikoudakis et al. report a partial mitochondrial genome of the extinct giant beaver Castoroides and estimate the origin of aquatic behavior in beavers to approximately 20 million years. This time estimate coincides with the extinction of terrestrial beavers and raises the question whether the two events had a common cause.}, language = {en} } @misc{SchaepersNiemuellerLakemeyeretal.2018, author = {Sch{\"a}pers, Bj{\"o}rn and Niemueller, Tim and Lakemeyer, Gerhard and Gebser, Martin and Schaub, Torsten H.}, title = {ASP-Based Time-Bounded Planning for Logistics Robots}, series = {Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)}, journal = {Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)}, publisher = {ASSOC Association for the Advancement of Artificial Intelligence}, address = {Palo Alto}, issn = {2334-0835}, pages = {509 -- 517}, year = {2018}, abstract = {Manufacturing industries are undergoing a major paradigm shift towards more autonomy. Automated planning and scheduling then becomes a necessity. The Planning and Execution Competition for Logistics Robots in Simulation held at ICAPS is based on this scenario and provides an interesting testbed. However, the posed problem is challenging as also demonstrated by the somewhat weak results in 2017. The domain requires temporal reasoning and dealing with uncertainty. We propose a novel planning system based on Answer Set Programming and the Clingo solver to tackle these problems and incentivize robot cooperation. Our results show a significant performance improvement, both, in terms of lowering computational requirements and better game metrics.}, language = {en} } @misc{KliemeTietzMeinel2018, author = {Klieme, Eric and Tietz, Christian and Meinel, Christoph}, title = {Beware of SMOMBIES}, series = {The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom 2018)/the 12th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE 2018)}, journal = {The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom 2018)/the 12th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE 2018)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-4387-7}, issn = {2324-9013}, doi = {10.1109/TrustCom/BigDataSE.2018.00096}, pages = {651 -- 660}, year = {2018}, abstract = {Several research evaluated the user's style of walking for the verification of a claimed identity and showed high authentication accuracies in many settings. In this paper we present a system that successfully verifies a user's identity based on many real world smartphone placements and yet not regarded interactions while walking. Our contribution is the distinction of all considered activities into three distinct subsets and a specific one-class Support Vector Machine per subset. Using sensor data of 30 participants collected in a semi-supervised study approach, we prove that unsupervised verification is possible with very low false-acceptance and false-rejection rates. We furthermore show that these subsets can be distinguished with a high accuracy and demonstrate that this system can be deployed on off-the-shelf smartphones.}, language = {en} } @misc{FabianBaumannEhlertetal.2017, author = {Fabian, Benjamin and Baumann, Annika and Ehlert, Mathias and Ververis, Vasilis and Ermakova, Tatiana}, title = {CORIA - Analyzing internet connectivity risks using network graphs}, series = {2017 IEEE International Conference on Communications (ICC)}, journal = {2017 IEEE International Conference on Communications (ICC)}, publisher = {IEEE}, address = {Piscataway}, isbn = {978-1-4673-8999-0}, issn = {1550-3607}, doi = {10.1109/ICC.2017.7996828}, pages = {6}, year = {2017}, abstract = {The Internet can be considered as the most important infrastructure for modern society and businesses. A loss of Internet connectivity has strong negative financial impacts for businesses and economies. Therefore, assessing Internet connectivity, in particular beyond their own premises and area of direct control, is of growing importance in the face of potential failures, accidents, and malicious attacks. This paper presents CORIA, a software framework for an easy analysis of connectivity risks based on large network graphs. It provides researchers, risk analysts, network managers and security consultants with a tool to assess an organization's connectivity and paths options through the Internet backbone, including a user-friendly and insightful visual representation of results. CORIA is flexibly extensible in terms of novel data sets, graph metrics, and risk scores that enable further use cases. The performance of CORIA is evaluated by several experiments on the Internet graph and further randomly generated networks.}, language = {en} } @misc{FichteHecherMeier2019, author = {Fichte, Johannes Klaus and Hecher, Markus and Meier, Arne}, title = {Counting Complexity for Reasoning in Abstract Argumentation}, series = {The Thirty-Third AAAI Conference on Artificial Intelligence, the Thirty-First Innovative Applications of Artificial Intelligence Conference, the Ninth AAAI Symposium on Educational Advances in Artificial Intelligence}, journal = {The Thirty-Third AAAI Conference on Artificial Intelligence, the Thirty-First Innovative Applications of Artificial Intelligence Conference, the Ninth AAAI Symposium on Educational Advances in Artificial Intelligence}, publisher = {AAAI Press}, address = {Palo Alto}, isbn = {978-1-57735-809-1}, pages = {2827 -- 2834}, year = {2019}, abstract = {In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.}, language = {en} } @misc{OPUS4-33848, title = {Design thinking : understand - improve - apply}, editor = {Plattner, Hasso and Meinel, Christoph and Leifer, Larry}, publisher = {Springer-Verlag Berlin Heidelberg}, address = {Berlin, Heidelberg}, isbn = {978-3-642-13756-3}, pages = {236 S.}, year = {2011}, language = {en} } @misc{AlhosseiniAlmodarresiYasinBinTareafNajafietal.2019, author = {Alhosseini Almodarresi Yasin, Seyed Ali and Bin Tareaf, Raad and Najafi, Pejman and Meinel, Christoph}, title = {Detect me if you can}, series = {Companion Proceedings of The 2019 World Wide Web Conference}, journal = {Companion Proceedings of The 2019 World Wide Web Conference}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6675-5}, doi = {10.1145/3308560.3316504}, pages = {148 -- 153}, year = {2019}, abstract = {Spam Bots have become a threat to online social networks with their malicious behavior, posting misinformation messages and influencing online platforms to fulfill their motives. As spam bots have become more advanced over time, creating algorithms to identify bots remains an open challenge. Learning low-dimensional embeddings for nodes in graph structured data has proven to be useful in various domains. In this paper, we propose a model based on graph convolutional neural networks (GCNN) for spam bot detection. Our hypothesis is that to better detect spam bots, in addition to defining a features set, the social graph must also be taken into consideration. GCNNs are able to leverage both the features of a node and aggregate the features of a node's neighborhood. We compare our approach, with two methods that work solely on a features set and on the structure of the graph. To our knowledge, this work is the first attempt of using graph convolutional neural networks in spam bot detection.}, language = {en} } @misc{MarquesdeCarvalhoJuergensen2007, author = {Marques de Carvalho, Jackson W. and J{\"u}rgensen, Helmut}, title = {Flexible Structured Mathematics Notation : IADIS, International Conference Interfaces and Human Computer Interaction, Lisabon, 2007}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, volume = {2007, 1}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, publisher = {Univ.}, address = {Potsdam}, issn = {0946-7580}, pages = {5 S.}, year = {2007}, language = {en} } @misc{Giese2017, author = {Giese, Holger}, title = {Formal models and analysis for self-adaptive cyber-physical systems}, series = {Lecture notes in computer science}, volume = {10231}, journal = {Lecture notes in computer science}, editor = {Kouchnarenko, Olga and Khosravi, Ramtin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-57666-4}, issn = {0302-9743}, doi = {10.1007/978-3-319-57666-4_1}, pages = {3 -- 9}, year = {2017}, abstract = {In this extended abstract, we will analyze the current challenges for the envisioned Self-Adaptive CPS. In addition, we will outline our results to approach these challenges with SMARTSOS [10] a generic approach based on extensions of graph transformation systems employing open and adaptive collaborations and models at runtime for trustworthy self-adaptation, self-organization, and evolution of the individual systems and the system-of-systems level taking the independent development, operation, management, and evolution of these systems into account.}, language = {en} }