@misc{SahlmannSchwotzer2018, author = {Sahlmann, Kristina and Schwotzer, Thomas}, title = {Ontology-based virtual IoT devices for edge computing}, series = {Proceedings of the 8th International Conference on the Internet of Things}, journal = {Proceedings of the 8th International Conference on the Internet of Things}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6564-2}, doi = {10.1145/3277593.3277597}, pages = {1 -- 7}, year = {2018}, abstract = {An IoT network may consist of hundreds heterogeneous devices. Some of them may be constrained in terms of memory, power, processing and network capacity. Manual network and service management of IoT devices are challenging. We propose a usage of an ontology for the IoT device descriptions enabling automatic network management as well as service discovery and aggregation. Our IoT architecture approach ensures interoperability using existing standards, i.e. MQTT protocol and SemanticWeb technologies. We herein introduce virtual IoT devices and their semantic framework deployed at the edge of network. As a result, virtual devices are enabled to aggregate capabilities of IoT devices, derive new services by inference, delegate requests/responses and generate events. Furthermore, they can collect and pre-process sensor data. These tasks on the edge computing overcome the shortcomings of the cloud usage regarding siloization, network bandwidth, latency and speed. We validate our proposition by implementing a virtual device on a Raspberry Pi.}, language = {en} } @misc{BoehneKreitz2018, author = {B{\"o}hne, Sebastian and Kreitz, Christoph}, title = {Learning how to prove}, series = {Electronic proceedings in theoretical computer science}, journal = {Electronic proceedings in theoretical computer science}, number = {267}, publisher = {Open Publishing Association}, address = {Sydney}, issn = {2075-2180}, doi = {10.4204/EPTCS.267.1}, pages = {1 -- 18}, year = {2018}, abstract = {We have developed an alternative approach to teaching computer science students how to prove. First, students are taught how to prove theorems with the Coq proof assistant. In a second, more difficult, step students will transfer their acquired skills to the area of textbook proofs. In this article we present a realisation of the second step. Proofs in Coq have a high degree of formality while textbook proofs have only a medium one. Therefore our key idea is to reduce the degree of formality from the level of Coq to textbook proofs in several small steps. For that purpose we introduce three proof styles between Coq and textbook proofs, called line by line comments, weakened line by line comments, and structure faithful proofs. While this article is mostly conceptional we also report on experiences with putting our approach into practise.}, language = {en} } @misc{MarweckiBaudisch2018, author = {Marwecki, Sebastian and Baudisch, Patrick}, title = {Scenograph}, series = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5948-1}, doi = {10.1145/3242587.3242648}, pages = {511 -- 520}, year = {2018}, abstract = {When developing a real-walking virtual reality experience, designers generally create virtual locations to fit a specific tracking volume. Unfortunately, this prevents the resulting experience from running on a smaller or differently shaped tracking volume. To address this, we present a software system called Scenograph. The core of Scenograph is a tracking volume-independent representation of real-walking experiences. Scenograph instantiates the experience to a tracking volume of given size and shape by splitting the locations into smaller ones while maintaining narrative structure. In our user study, participants' ratings of realism decreased significantly when existing techniques were used to map a 25m2 experience to 9m2 and an L-shaped 8m2 tracking volume. In contrast, ratings did not differ when Scenograph was used to instantiate the experience.}, language = {en} } @misc{KliemeTietzMeinel2018, author = {Klieme, Eric and Tietz, Christian and Meinel, Christoph}, title = {Beware of SMOMBIES}, series = {The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom 2018)/the 12th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE 2018)}, journal = {The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom 2018)/the 12th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE 2018)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-4387-7}, issn = {2324-9013}, doi = {10.1109/TrustCom/BigDataSE.2018.00096}, pages = {651 -- 660}, year = {2018}, abstract = {Several research evaluated the user's style of walking for the verification of a claimed identity and showed high authentication accuracies in many settings. In this paper we present a system that successfully verifies a user's identity based on many real world smartphone placements and yet not regarded interactions while walking. Our contribution is the distinction of all considered activities into three distinct subsets and a specific one-class Support Vector Machine per subset. Using sensor data of 30 participants collected in a semi-supervised study approach, we prove that unsupervised verification is possible with very low false-acceptance and false-rejection rates. We furthermore show that these subsets can be distinguished with a high accuracy and demonstrate that this system can be deployed on off-the-shelf smartphones.}, language = {en} } @misc{KrstićJentzsch2018, author = {Krstić, Miloš and Jentzsch, Anne-Kristin}, title = {Reliability, safety and security of the electronics in automated driving vehicles - joint lab lecturing approach}, series = {2018 12TH European Workshop on Microelectronics Education (EWME)}, journal = {2018 12TH European Workshop on Microelectronics Education (EWME)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-1157-9}, pages = {21 -- 22}, year = {2018}, abstract = {This paper proposes an education approach for master and bachelor students to enhance their skills in the area of reliability, safety and security of the electronic components in automated driving. The approach is based on the active synergetic work of research institutes, academia and industry in the frame of joint lab. As an example, the jointly organized summer school with the respective focus is organized and elaborated.}, language = {en} } @misc{BosserCabalarDieguezetal.2018, author = {Bosser, Anne-Gwenn and Cabalar, Pedro and Dieguez, Martin and Schaub, Torsten H.}, title = {Introducing temporal stable models for linear dynamic logic}, series = {16th International Conference on Principles of Knowledge Representation and Reasoning}, journal = {16th International Conference on Principles of Knowledge Representation and Reasoning}, publisher = {ASSOC Association for the Advancement of Artificial Intelligence}, address = {Palo Alto}, pages = {12 -- 21}, year = {2018}, abstract = {We propose a new temporal extension of the logic of Here-and-There (HT) and its equilibria obtained by combining it with dynamic logic over (linear) traces. Unlike previous temporal extensions of HT based on linear temporal logic, the dynamic logic features allow us to reason about the composition of actions. For instance, this can be used to exercise fine grained control when planning in robotics, as exemplified by GOLOG. In this paper, we lay the foundations of our approach, and refer to it as Linear Dynamic Equilibrium Logic, or simply DEL. We start by developing the formal framework of DEL and provide relevant characteristic results. Among them, we elaborate upon the relationships to traditional linear dynamic logic and previous temporal extensions of HT.}, language = {en} } @misc{Przybylla2019, author = {Przybylla, Mareen}, title = {Interactive objects in physical computing and their role in the learning process}, series = {Constructivist foundations}, volume = {14}, journal = {Constructivist foundations}, number = {3}, publisher = {Vrije Univ.}, address = {Bussels}, issn = {1782-348X}, pages = {264 -- 266}, year = {2019}, abstract = {The target article discusses the question of how educational makerspaces can become places supportive of knowledge construction. This question is too often neglected by people who run makerspaces, as they mostly explain how to use different tools and focus on the creation of a product. In makerspaces, often pupils also engage in physical computing activities and thus in the creation of interactive artifacts containing embedded systems, such as smart shoes or wristbands, plant monitoring systems or drink mixing machines. This offers the opportunity to reflect on teaching physical computing in computer science education, where similarly often the creation of the product is so strongly focused upon that the reflection of the learning process is pushed into the background.}, language = {en} } @misc{FichteHecherMeier2019, author = {Fichte, Johannes Klaus and Hecher, Markus and Meier, Arne}, title = {Counting Complexity for Reasoning in Abstract Argumentation}, series = {The Thirty-Third AAAI Conference on Artificial Intelligence, the Thirty-First Innovative Applications of Artificial Intelligence Conference, the Ninth AAAI Symposium on Educational Advances in Artificial Intelligence}, journal = {The Thirty-Third AAAI Conference on Artificial Intelligence, the Thirty-First Innovative Applications of Artificial Intelligence Conference, the Ninth AAAI Symposium on Educational Advances in Artificial Intelligence}, publisher = {AAAI Press}, address = {Palo Alto}, isbn = {978-1-57735-809-1}, pages = {2827 -- 2834}, year = {2019}, abstract = {In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.}, language = {en} } @misc{AlhosseiniAlmodarresiYasinBinTareafNajafietal.2019, author = {Alhosseini Almodarresi Yasin, Seyed Ali and Bin Tareaf, Raad and Najafi, Pejman and Meinel, Christoph}, title = {Detect me if you can}, series = {Companion Proceedings of The 2019 World Wide Web Conference}, journal = {Companion Proceedings of The 2019 World Wide Web Conference}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6675-5}, doi = {10.1145/3308560.3316504}, pages = {148 -- 153}, year = {2019}, abstract = {Spam Bots have become a threat to online social networks with their malicious behavior, posting misinformation messages and influencing online platforms to fulfill their motives. As spam bots have become more advanced over time, creating algorithms to identify bots remains an open challenge. Learning low-dimensional embeddings for nodes in graph structured data has proven to be useful in various domains. In this paper, we propose a model based on graph convolutional neural networks (GCNN) for spam bot detection. Our hypothesis is that to better detect spam bots, in addition to defining a features set, the social graph must also be taken into consideration. GCNNs are able to leverage both the features of a node and aggregate the features of a node's neighborhood. We compare our approach, with two methods that work solely on a features set and on the structure of the graph. To our knowledge, this work is the first attempt of using graph convolutional neural networks in spam bot detection.}, language = {en} } @misc{CabalarFandinoSchaubetal.2019, author = {Cabalar, Pedro and Fandi{\~n}o, Jorge and Schaub, Torsten H. and Schellhorn, Sebastian}, title = {Lower Bound Founded Logic of Here-and-There}, series = {Logics in Artificial Intelligence}, volume = {11468}, journal = {Logics in Artificial Intelligence}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-19570-0}, issn = {0302-9743}, doi = {10.1007/978-3-030-19570-0_34}, pages = {509 -- 525}, year = {2019}, abstract = {A distinguishing feature of Answer Set Programming is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There, whose equilibrium models correspond to stable models. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. This idea was generalized by Aziz to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In this paper, we present a logical reconstruction of Aziz' idea in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables along with its equilibrium models and elaborate upon its formal properties. Finally, we compare our approach with related ones and sketch future work.}, language = {en} }