@misc{SchaubWoltran2018, author = {Schaub, Torsten H. and Woltran, Stefan}, title = {Special issue on answer set programming}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0554-8}, pages = {101 -- 103}, year = {2018}, language = {en} } @misc{FrankKreitz2018, author = {Frank, Mario and Kreitz, Christoph}, title = {A theorem prover for scientific and educational purposes}, series = {Electronic proceedings in theoretical computer science}, journal = {Electronic proceedings in theoretical computer science}, number = {267}, publisher = {Open Publishing Association}, address = {Sydney}, issn = {2075-2180}, doi = {10.4204/EPTCS.267.4}, pages = {59 -- 69}, year = {2018}, abstract = {We present a prototype of an integrated reasoning environment for educational purposes. The presented tool is a fragment of a proof assistant and automated theorem prover. We describe the existing and planned functionality of the theorem prover and especially the functionality of the educational fragment. This currently supports working with terms of the untyped lambda calculus and addresses both undergraduate students and researchers. We show how the tool can be used to support the students' understanding of functional programming and discuss general problems related to the process of building theorem proving software that aims at supporting both research and education.}, language = {en} } @misc{SchaepersNiemuellerLakemeyeretal.2018, author = {Sch{\"a}pers, Bj{\"o}rn and Niemueller, Tim and Lakemeyer, Gerhard and Gebser, Martin and Schaub, Torsten H.}, title = {ASP-Based Time-Bounded Planning for Logistics Robots}, series = {Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)}, journal = {Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)}, publisher = {ASSOC Association for the Advancement of Artificial Intelligence}, address = {Palo Alto}, issn = {2334-0835}, pages = {509 -- 517}, year = {2018}, abstract = {Manufacturing industries are undergoing a major paradigm shift towards more autonomy. Automated planning and scheduling then becomes a necessity. The Planning and Execution Competition for Logistics Robots in Simulation held at ICAPS is based on this scenario and provides an interesting testbed. However, the posed problem is challenging as also demonstrated by the somewhat weak results in 2017. The domain requires temporal reasoning and dealing with uncertainty. We propose a novel planning system based on Answer Set Programming and the Clingo solver to tackle these problems and incentivize robot cooperation. Our results show a significant performance improvement, both, in terms of lowering computational requirements and better game metrics.}, language = {en} } @misc{MarquesdeCarvalhoJuergensen2007, author = {Marques de Carvalho, Jackson W. and J{\"u}rgensen, Helmut}, title = {Flexible Structured Mathematics Notation : IADIS, International Conference Interfaces and Human Computer Interaction, Lisabon, 2007}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, volume = {2007, 1}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, publisher = {Univ.}, address = {Potsdam}, issn = {0946-7580}, pages = {5 S.}, year = {2007}, language = {en} } @misc{StoepelSchubertMargariaSteffen2007, author = {St{\"o}pel, Christoph and Schubert, Wolfgang and Margaria-Steffen, Tiziana}, title = {Plug-ins und Dienste : Ans{\"a}tze zu Bew{\"a}ltigung zeitvarianter Gesch{\"a}ftsprozesse}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, volume = {2007, 2}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, publisher = {Univ.}, address = {Potsdam}, issn = {0946-7580}, pages = {14 S.}, year = {2007}, language = {de} } @misc{BordihnNagyVaszil2018, author = {Bordihn, Henning and Nagy, Benedek and Vaszil, Gy{\"o}rgy}, title = {Preface: Non-classical models of automata and applications VIII}, series = {RAIRO-Theoretical informatics and appli and applications}, volume = {52}, journal = {RAIRO-Theoretical informatics and appli and applications}, number = {2-4}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0988-3754}, doi = {10.1051/ita/2018019}, pages = {87 -- 88}, year = {2018}, language = {en} } @misc{LifschitzSchaubWoltran2018, author = {Lifschitz, Vladimir and Schaub, Torsten H. and Woltran, Stefan}, title = {Interview with Vladimir Lifschitz}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0552-x}, pages = {213 -- 218}, year = {2018}, abstract = {This interview with Vladimir Lifschitz was conducted by Torsten Schaub at the University of Texas at Austin in August 2017. The question set was compiled by Torsten Schaub and Stefan Woltran.}, language = {en} } @misc{BrewkaSchaubWoltran2018, author = {Brewka, Gerhard and Schaub, Torsten H. and Woltran, Stefan}, title = {Interview with Gerhard Brewka}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0549-5}, pages = {219 -- 221}, year = {2018}, abstract = {This interview with Gerhard Brewka was conducted by correspondance in May 2018. The question set was compiled by Torsten Schaub and Stefan Woltran.}, language = {en} } @misc{Przybylla2019, author = {Przybylla, Mareen}, title = {Interactive objects in physical computing and their role in the learning process}, series = {Constructivist foundations}, volume = {14}, journal = {Constructivist foundations}, number = {3}, publisher = {Vrije Univ.}, address = {Bussels}, issn = {1782-348X}, pages = {264 -- 266}, year = {2019}, abstract = {The target article discusses the question of how educational makerspaces can become places supportive of knowledge construction. This question is too often neglected by people who run makerspaces, as they mostly explain how to use different tools and focus on the creation of a product. In makerspaces, often pupils also engage in physical computing activities and thus in the creation of interactive artifacts containing embedded systems, such as smart shoes or wristbands, plant monitoring systems or drink mixing machines. This offers the opportunity to reflect on teaching physical computing in computer science education, where similarly often the creation of the product is so strongly focused upon that the reflection of the learning process is pushed into the background.}, language = {en} } @misc{NeubauerHaubeltWankoetal.2018, author = {Neubauer, Kai and Haubelt, Christian and Wanko, Philipp and Schaub, Torsten H.}, title = {Utilizing quad-trees for efficient design space exploration with partial assignment evaluation}, series = {2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC)}, journal = {2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5090-0602-1}, issn = {2153-6961}, doi = {10.1109/ASPDAC.2018.8297362}, pages = {434 -- 439}, year = {2018}, abstract = {Recently, it has been shown that constraint-based symbolic solving techniques offer an efficient way for deciding binding and routing options in order to obtain a feasible system level implementation. In combination with various background theories, a feasibility analysis of the resulting system may already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can be pruned early in the decision process, which fastens the solving accordingly. However, allowing a proper design space exploration including multi-objective optimization also requires an efficient structure for storing and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree data structure in the context of partial assignment evaluation during system synthesis. Out experiments show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees over a commonly used list-based implementation for large combinatorial optimization problems.}, language = {en} }