@misc{MuehlbauerSchroederSchoelzel2017, author = {M{\"u}hlbauer, Felix and Schr{\"o}der, Lukas and Sch{\"o}lzel, Mario}, title = {On hardware-based fault-handling in dynamically scheduled processors}, series = {20th International Symposium on Design and Diagnostics of Electronic Circuits \& Systems (DDECS) 2017}, journal = {20th International Symposium on Design and Diagnostics of Electronic Circuits \& Systems (DDECS) 2017}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-0472-4}, issn = {2334-3133}, doi = {10.1109/DDECS.2017.7934572}, pages = {201 -- 206}, year = {2017}, abstract = {This paper describes architectural extensions for a dynamically scheduled processor, so that it can be used in three different operation modes, ranging from high-performance, to high-reliability. With minor hardware-extensions of the control path, the resources of the superscalar data-path can be used either for high-performance execution, fail-safe-operation, or fault-tolerant-operation. This makes the processor-architecture a very good candidate for applications with dynamically changing reliability requirements, e.g. for automotive applications. The paper reports the hardware-overhead for the extensions, and investigates the performance penalties introduced by the fail-safe and fault-tolerant mode. Furthermore, a comprehensive fault simulation was carried out in order to investigate the fault-coverage of the proposed approach.}, language = {en} } @misc{MuehlbauerSchroederSkoncejetal.2017, author = {M{\"u}hlbauer, Felix and Schr{\"o}der, Lukas and Skoncej, Patryk and Sch{\"o}lzel, Mario}, title = {Handling manufacturing and aging faults with software-based techniques in tiny embedded systems}, series = {18th IEEE Latin American Test Symposium (LATS 2017)}, journal = {18th IEEE Latin American Test Symposium (LATS 2017)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-0415-1}, doi = {10.1109/LATW.2017.7906756}, pages = {6}, year = {2017}, abstract = {Non-volatile memory area occupies a large portion of the area of a chip in an embedded system. Such memories are prone to manufacturing faults, retention faults, and aging faults. The paper presents a single software based technique that allows for handling all of these fault types in tiny embedded systems without the need for hardware support. This is beneficial for low-cost embedded systems with simple memory architectures. A software infrastructure and a flow are presented that demonstrate how the presented technique is used in general for fault handling right after manufacturing and in-the-field. Moreover, a full implementation is presented for a MSP430 microcontroller, along with a discussion of the performance, overhead, and reliability impacts.}, language = {en} }