@article{SchaubWoltran2018, author = {Schaub, Torsten H. and Woltran, Stefan}, title = {Answer set programming unleashed!}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0550-z}, pages = {105 -- 108}, year = {2018}, abstract = {Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92-103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem's specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP's modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53-68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)]}, language = {en} } @article{BaierDiCiccioMendlingetal.2018, author = {Baier, Thomas and Di Ciccio, Claudio and Mendling, Jan and Weske, Mathias}, title = {Matching events and activities by integrating behavioral aspects and label analysis}, series = {Software and systems modeling}, volume = {17}, journal = {Software and systems modeling}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-017-0603-z}, pages = {573 -- 598}, year = {2018}, abstract = {Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs.}, language = {en} } @article{PrzybyllaRomeike2018, author = {Przybylla, Mareen and Romeike, Ralf}, title = {Empowering learners with tools in CS education}, series = {it - Information Technology}, volume = {60}, journal = {it - Information Technology}, number = {2}, publisher = {De Gruyter}, address = {Berlin}, issn = {1611-2776}, doi = {10.1515/itit-2017-0032}, pages = {91 -- 101}, year = {2018}, abstract = {In computer science, computer systems are both, objects of investigation and tools that enable creative learning and design. Tools for learning have a long tradition in computer science education. Already in the late 1960s, Papert developed a concept which had an immense impact on the development of informal education in the following years: his theory of constructionism understands learning as a creative process of knowledge construction that is most effective when learners create something purposeful that they can try out, show around, discuss, analyse and receive praise for. By now, there are numerous learning and programming environments that are based on the constructionist ideas. Modern tools offer opportunities for students to learn in motivating ways and gain impressive results in programming games, animations, implementing 3D models or developing interactive objects. This article gives an overview of computer science education research related to tools and media to be used in educational settings. We analyse different types of tools with a special focus on the categorization and development of tools for student adequate physical computing activities in the classroom. Research around the development and evaluation of tools and learning resources in the domain of physical computing is illustrated with the example of "My Interactive Garden", a constructionist learning and programming environment. It is explained how the results from empirical studies are integrated in the continuous development of the learning material.}, language = {en} } @article{GebserObermeierSchaubetal.2018, author = {Gebser, Martin and Obermeier, Philipp and Schaub, Torsten H. and Ratsch-Heitmann, Michel and Runge, Mario}, title = {Routing driverless transport vehicles in car assembly with answer set programming}, series = {Theory and practice of logic programming}, volume = {18}, journal = {Theory and practice of logic programming}, number = {3-4}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068418000182}, pages = {520 -- 534}, year = {2018}, abstract = {Automated storage and retrieval systems are principal components of modern production and warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated pallet trucks in transporting production materials between storage locations and assembly stations. While low-level control systems take care of navigating such driverless vehicles along programmed routes and avoid collisions even under unforeseen circumstances, in the common case of multiple vehicles sharing the same operation area, the problem remains how to set up routes such that a collection of transport tasks is accomplished most effectively. We address this prevalent problem in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial vehicles, where routes for automated guided vehicles used in the production process have traditionally been hand-coded by human engineers. Such adhoc methods may suffice as long as a running production process remains in place, while any change in the factory layout or production targets necessitates tedious manual reconfiguration, not to mention the missing portability between different production plants. Unlike this, we propose a declarative approach based on Answer Set Programming to optimize the routes taken by automated guided vehicles for accomplishing transport tasks. The advantages include a transparent and executable problem formalization, provable optimality of routes relative to objective criteria, as well as elaboration tolerance towards particular factory layouts and production targets. Moreover, we demonstrate that our approach is efficient enough to deal with the transport tasks evolving in realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH.}, language = {en} } @article{GebserKaminskiKaufmannetal.2018, author = {Gebser, Martin and Kaminski, Roland and Kaufmann, Benjamin and L{\"u}hne, Patrick and Obermeier, Philipp and Ostrowski, Max and Romero Davila, Javier and Schaub, Torsten H. and Schellhorn, Sebastian and Wanko, Philipp}, title = {The Potsdam Answer Set Solving Collection 5.0}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0528-x}, pages = {181 -- 182}, year = {2018}, abstract = {The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems.}, language = {en} } @article{HaubeltNeubauerSchaubetal.2018, author = {Haubelt, Christian and Neubauer, Kai and Schaub, Torsten H. and Wanko, Philipp}, title = {Design space exploration with answer set programming}, series = {K{\"u}nstliche Intelligenz}, volume = {32}, journal = {K{\"u}nstliche Intelligenz}, number = {2-3}, publisher = {Springer}, address = {Heidelberg}, issn = {0933-1875}, doi = {10.1007/s13218-018-0530-3}, pages = {205 -- 206}, year = {2018}, abstract = {The aim of our project design space exploration with answer set programming is to develop a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system design problem and simultaneously performs Design Space Exploration (DSE) to find the most favorable alternatives. We leverage recent developments in ASP solving that allow for tight integration of background theories to create a holistic framework for effective DSE.}, language = {en} } @article{PrescherBornscheinKoehlmannetal.2018, author = {Prescher, Denise and Bornschein, Jens and K{\"o}hlmann, Wiebke and Weber, Gerhard}, title = {Touching graphical applications}, series = {Universal Access in the Information Society}, volume = {17}, journal = {Universal Access in the Information Society}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1615-5289}, doi = {10.1007/s10209-017-0538-8}, pages = {391 -- 409}, year = {2018}, abstract = {Novel two-dimensional tactile displays enable blind users to not only get access to the textual but also to the graphical content of a graphical user interface. Due to the higher amount of information that can be presented in parallel, orientation and exploration can be more complex. In this paper we present the HyperBraille system, which consists of a pin-matrix device as well as a graphical screen reader providing the user with appropriate presentation and interaction possibilities. To allow for a detailed analysis of bimanual interaction strategies on a pin-matrix device, we conducted two user studies with a total of 12 blind people. The task was to fill in .pdf forms on the pin-matrix device by using different input methods, namely gestures, built-in hardware buttons as well as a conventional PC keyboard. The forms were presented in a semigraphic view type that not only contains Braille but also tactile widgets in a spatial arrangement. While completion time and error rate partly depended on the chosen input method, the usage of special reading strategies seemed to be independent of it. A direct comparison of the system and a conventional assistive technology (screen reader with single-line Braille device) showed that interaction on the pin-matrix device can be very efficient if the user is trained. The two-dimensional output can improve access to .pdf forms with insufficient accessibility as the mapping of input controls and the corresponding labels can be supported by a spatial presentation.}, language = {en} } @article{AfantenosPeldszusStede2018, author = {Afantenos, Stergos and Peldszus, Andreas and Stede, Manfred}, title = {Comparing decoding mechanisms for parsing argumentative structures}, series = {Argument \& Computation}, volume = {9}, journal = {Argument \& Computation}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1946-2166}, doi = {10.3233/AAC-180033}, pages = {177 -- 192}, year = {2018}, abstract = {Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.}, language = {en} } @article{BanbaraInoueKaufmannetal.2018, author = {Banbara, Mutsunori and Inoue, Katsumi and Kaufmann, Benjamin and Okimoto, Tenda and Schaub, Torsten H. and Soh, Takehide and Tamura, Naoyuki and Wanko, Philipp}, title = {teaspoon}, series = {Annals of operation research}, volume = {275}, journal = {Annals of operation research}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0254-5330}, doi = {10.1007/s10479-018-2757-7}, pages = {3 -- 37}, year = {2018}, abstract = {Answer Set Programming (ASP) is an approach to declarative problem solving, combining a rich yet simple modeling language with high performance solving capacities. We here develop an ASP-based approach to curriculum-based course timetabling (CB-CTT), one of the most widely studied course timetabling problems. The resulting teaspoon system reads a CB-CTT instance of a standard input format and converts it into a set of ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving, which can subsequently be solved by any off-the-shelf ASP systems. We establish the competitiveness of our approach by empirically contrasting it to the best known bounds obtained so far via dedicated implementations. Furthermore, we extend the teaspoon system to multi-objective course timetabling and consider minimal perturbation problems.}, language = {en} } @article{GianniniRichterServettoetal.2018, author = {Giannini, Paola and Richter, Tim and Servetto, Marco and Zucca, Elena}, title = {Tracing sharing in an imperative pure calculus}, series = {Science of computer programming}, volume = {172}, journal = {Science of computer programming}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-6423}, doi = {10.1016/j.scico.2018.11.007}, pages = {180 -- 202}, year = {2018}, abstract = {We introduce a type and effect system, for an imperative object calculus, which infers sharing possibly introduced by the evaluation of an expression, represented as an equivalence relation among its free variables. This direct representation of sharing effects at the syntactic level allows us to express in a natural way, and to generalize, widely-used notions in literature, notably uniqueness and borrowing. Moreover, the calculus is pure in the sense that reduction is defined on language terms only, since they directly encode store. The advantage of this non-standard execution model with respect to a behaviorally equivalent standard model using a global auxiliary structure is that reachability relations among references are partly encoded by scoping. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} }