@article{GebserLiuNamasivayametal.2007, author = {Gebser, Martin and Liu, Lengning and Namasivayam, Gayathri and Neumann, Andr{\´e} and Schaub, Torsten and Truszczynski, Miroslaw}, title = {The first answer set programming system competition}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{AngerGebserLinkeetal.2005, author = {Anger, Christian and Gebser, Martin and Linke, Thomas and Neumann, Andre and Schaub, Torsten}, title = {The nomore++ approach to answer set solving}, year = {2005}, language = {en} } @article{AngerKonczakLinkeetal.2005, author = {Anger, Christian and Konczak, Kathrin and Linke, Thomas and Schaub, Torsten}, title = {A Glimpse of Answer Set Programming}, issn = {0170-4516}, year = {2005}, language = {en} } @article{GrellKonczakSchaub2005, author = {Grell, Susanne and Konczak, Kathrin and Schaub, Torsten}, title = {nomore) : a system for computing preferred Answer Sets}, issn = {0302-9743}, year = {2005}, language = {en} } @article{KonczakSchaubLinke2003, author = {Konczak, Kathrin and Schaub, Torsten and Linke, Thomas}, title = {Graphs and colorings for answer set programming with preferences}, issn = {0169-2968}, year = {2003}, abstract = {The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one}, language = {en} } @article{BesnardSchaubTompitsetal.2003, author = {Besnard, Philippe and Schaub, Torsten and Tompits, Hans and Woltran, Stefan}, title = {Paraconsistent reasoning via quantified boolean formulas : Part II: Circumscribing inconsistent theories}, isbn = {3-540- 409494-5}, year = {2003}, language = {en} } @article{DelgrandeHunterSchaub2002, author = {Delgrande, James Patrick and Hunter, Anthony and Schaub, Torsten}, title = {COBA: a consistency-based belief revision system}, isbn = {3-540-44190-5}, year = {2002}, language = {en} } @article{FloeterNicolasSchaubetal.2003, author = {Fl{\"o}ter, Andr{\´e} and Nicolas, Jacques and Schaub, Torsten and Selbig, Joachim}, title = {Threshold extraction in metabolite concentration data}, year = {2003}, language = {en} } @article{SchaubWang2002, author = {Schaub, Torsten and Wang, T.}, title = {Preferred well-founded semantics for logic programming by alternating fixpoints : preliminary report}, year = {2002}, language = {en} } @article{DelgrandeSchaub2003, author = {Delgrande, James Patrick and Schaub, Torsten}, title = {A concictency-based paradigm for belief change}, issn = {0004-3702}, year = {2003}, language = {en} }