@phdthesis{Behm2019, author = {Behm, Laura Vera Johanna}, title = {Thermoresponsive Zellkultursubstrate f{\"u}r zeitlich-r{\"a}umlich gesteuertes Auswachsen neuronaler Zellen}, doi = {10.25932/publishup-43619}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436196}, school = {Universit{\"a}t Potsdam}, pages = {VII, 105}, year = {2019}, abstract = {Ein wichtiges Ziel der Neurowissenschaften ist das Verst{\"a}ndnis der komplexen und zugleich faszinierenden, hochgeordneten Vernetzung der Neurone im Gehirn, welche neuronalen Prozessen, wie zum Beispiel dem Wahrnehmen oder Lernen wie auch Neuropathologien zu Grunde liegt. F{\"u}r verbesserte neuronale Zellkulturmodelle zur detaillierten Untersuchung dieser Prozesse ist daher die Rekonstruktion von geordneten neuronalen Verbindungen dringend erforderlich. Mit Oberfl{\"a}chenstrukturen aus zellattraktiven und zellabweisenden Beschichtungen k{\"o}nnen neuronale Zellen und ihre Neuriten in vitro strukturiert werden. Zur Kontrolle der neuronalen Verbindungsrichtung muss das Auswachsen der Axone zu benachbarten Zellen dynamisch gesteuert werden, zum Beispiel {\"u}ber eine ver{\"a}nderliche Zug{\"a}nglichkeit der Oberfl{\"a}che. In dieser Arbeit wurde untersucht, ob mit thermoresponsiven Polymeren (TRP) beschichtete Zellkultursubstrate f{\"u}r eine dynamische Kontrolle des Auswachsens neuronaler Zellen geeignet sind. TRP k{\"o}nnen {\"u}ber die Temperatur von einem zellabweisenden in einen zellattraktiven Zustand geschaltet werden, womit die Zug{\"a}nglichkeit der Oberfl{\"a}che f{\"u}r Zellen dynamisch gesteuert werden kann. Die TRP-Beschichtung wurde mikrostrukturiert, um einzelne oder wenige neuronale Zellen zun{\"a}chst auf der Oberfl{\"a}che anzuordnen und das Auswachsen der Zellen und Neuriten {\"u}ber definierte TRP-Bereiche in Abh{\"a}ngigkeit der Temperatur zeitlich und r{\"a}umlich zu kontrollieren. Das Protokoll wurde mit der neuronalen Zelllinie SH-SY5Y etabliert und auf humane induzierte Neurone {\"u}bertragen. Die Anordnung der Zellen konnte bei Kultivierung im zellabweisenden Zustand des TRPs f{\"u}r bis zu 7 Tage aufrecht erhalten werden. Durch Schalten des TRPs in den zellattraktiven Zustand konnte das Auswachsen der Neuriten und Zellen zeitlich und r{\"a}umlich induziert werden. Immunozytochemische F{\"a}rbungen und Patch-Clamp-Ableitungen der Neurone demonstrierten die einfache Anwendbarkeit und Zellkompatibilit{\"a}t der TRP-Substrate. Eine pr{\"a}zisere r{\"a}umliche Kontrolle des Auswachsens der Zellen sollte durch lokales Schalten der TRP-Beschichtung erreicht werden. Daf{\"u}r wurden Mikroheizchips mit Mikroelektroden zur lokalen Jouleschen Erw{\"a}rmung der Substratoberfl{\"a}che entwickelt. Zur Evaluierung der generierten Temperaturprofile wurde eine Temperaturmessmethode entwickelt und die erhobenen Messwerte mit numerisch simulierten Werten abgeglichen. Die Temperaturmessmethode basiert auf einfach zu applizierenden Sol-Gel-Schichten, die den temperatursensitiven Fluoreszenzfarbstoff Rhodamin B enthalten. Sie erm{\"o}glicht oberfl{\"a}chennahe Temperaturmessungen in trockener und w{\"a}ssriger Umgebung mit hoher Orts- und Temperaturaufl{\"o}sung. Numerische Simulationen der Temperaturprofile korrelierten gut mit den experimentellen Daten. Auf dieser Basis konnten Geometrie und Material der Mikroelektroden hinsichtlich einer lokal stark begrenzten Temperierung optimiert werden. Ferner wurden f{\"u}r die Kultvierung der Zellen auf den Mikroheizchips eine Zellkulturkammer und Kontaktboard f{\"u}r die elektrische Kontaktierung der Mikroelektroden geschaffen. Die vorgestellten Ergebnisse demonstrieren erstmalig das enorme Potential thermoresponsiver Zellkultursubstrate f{\"u}r die zeitlich und r{\"a}umlich gesteuerte Formation geordneter neuronaler Verbindungen in vitro. Zuk{\"u}nftig k{\"o}nnte dies detaillierte Studien zur neuronalen Informationsverarbeitung oder zu Neuropathologien an relevanten, humanen Zellmodellen erm{\"o}glichen.}, language = {de} } @phdthesis{Hoffmann2019, author = {Hoffmann, Mathias}, title = {Improving measurement and modelling approaches of the closed chamber method to better assess dynamics and drivers of carbon based greenhouse gas emissions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421302}, school = {Universit{\"a}t Potsdam}, pages = {xx, 204, xxix}, year = {2019}, abstract = {The trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components. However, the broad range of different chamber designs, related operational procedures and data-processing strategies which are described in the scientific literature contribute to the overall uncertainty of closed chamber-based emission estimates. Hence, the outcomes of meta-analyses are limited, since these methodical differences hamper the comparability between studies. Thus, a standardization of closed chamber data acquisition and processing is much-needed. Within this thesis, a set of case studies were performed to: (I) develop standardized routines for an unbiased data acquisition and processing, with the aim of providing traceable, reproducible and comparable closed chamber based C emission estimates; (II) validate those routines by comparing C emissions derived using closed chambers with independent C emission estimates; and (III) reveal processes driving the spatio-temporal dynamics of C emissions by developing (data processing based) flux separation approaches. The case studies showed: (I) the importance to test chamber designs under field conditions for an appropriate sealing integrity and to ensure an unbiased flux measurement. Compared to the sealing integrity, the use of a pressure vent and fan was of minor importance, affecting mainly measurement precision; (II) that the developed standardized data processing routines proved to be a powerful and flexible tool to estimate C gas emissions and that this tool can be successfully applied on a broad range of flux data sets from very different ecosystem; (III) that automatic chamber measurements display temporal dynamics of CO2 and CH4 fluxes very well and most importantly, that they accurately detect small-scale spatial differences in the development of soil C when validated against repeated soil inventories; and (IV) that a simple algorithm to separate CH4 fluxes into ebullition and diffusion improves the identification of environmental drivers, which allows for an accurate gap-filling of measured CH4 fluxes. Overall, the proposed standardized data acquisition and processing routines strongly improved the detection accuracy and precision of source/sink patterns of gaseous C emissions. Hence, future studies, which consider the recommended improvements, will deliver valuable new data and insights to broaden our understanding of spatio-temporal C gas dynamics, their particular environmental drivers and underlying processes.}, language = {en} } @phdthesis{Paganini2018, author = {Paganini, Claudio Francesco}, title = {The role of trapping in black hole spacetimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414686}, school = {Universit{\"a}t Potsdam}, pages = {v, 138}, year = {2018}, abstract = {In the here presented work we discuss a series of results that are all in one way or another connected to the phenomenon of trapping in black hole spacetimes. First we present a comprehensive review of the Kerr-Newman-Taub-NUT-de-Sitter family of black hole spacetimes and their most important properties. From there we go into a detailed analysis of the bahaviour of null geodesics in the exterior region of a sub-extremal Kerr spacetime. We show that most well known fundamental properties of null geodesics can be represented in one plot. In particular, one can see immediately that the ergoregion and trapping are separated in phase space. We then consider the sets of future/past trapped null geodesics in the exterior region of a sub-extremal Kerr-Newman-Taub-NUT spacetime. We show that from the point of view of any timelike observer outside of such a black hole, trapping can be understood as two smooth sets of spacelike directions on the celestial sphere of the observer. Therefore the topological structure of the trapped set on the celestial sphere of any observer is identical to that in Schwarzschild. We discuss how this is relevant to the black hole stability problem. In a further development of these observations we introduce the notion of what it means for the shadow of two observers to be degenerate. We show that, away from the axis of symmetry, no continuous degeneration exists between the shadows of observers at any point in the exterior region of any Kerr-Newman black hole spacetime of unit mass. Therefore, except possibly for discrete changes, an observer can, by measuring the black holes shadow, determine the angular momentum and the charge of the black hole under observation, as well as the observer's radial position and angle of elevation above the equatorial plane. Furthermore, his/her relative velocity compared to a standard observer can also be measured. On the other hand, the black hole shadow does not allow for a full parameter resolution in the case of a Kerr-Newman-Taub-NUT black hole, as a continuous degeneration relating specific angular momentum, electric charge, NUT charge and elevation angle exists in this case. We then use the celestial sphere to show that trapping is a generic feature of any black hole spacetime. In the last chapter we then prove a generalization of the mode stability result of Whiting (1989) for the Teukolsky equation for the case of real frequencies. The main result of the last chapter states that a separated solution of the Teukolsky equation governing massless test fields on the Kerr spacetime, which is purely outgoing at infinity, and purely ingoing at the horizon, must vanish. This has the consequence, that for real frequencies, there are linearly independent fundamental solutions of the radial Teukolsky equation which are purely ingoing at the horizon, and purely outgoing at infinity, respectively. This fact yields a representation formula for solutions of the inhomogenous Teukolsky equation, and was recently used by Shlapentokh-Rothman (2015) for the scalar wave equation.}, language = {en} } @phdthesis{Welsch2022, author = {Welsch, Maryna}, title = {Investigation of the stress tolerance regulatory network integration of the NAC transcription factor JUNGBRUNNEN1 (JUB1)}, doi = {10.25932/publishup-54731}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-547310}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 116}, year = {2022}, abstract = {The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) is an important negative regulator of plant senescence, as well as of gibberellic acid (GA) and brassinosteroid (BR) biosynthesis in Arabidopsis thaliana. Overexpression of JUB1 promotes longevity and enhances tolerance to drought and other abiotic stresses. A similar role of JUB1 has been observed in other plant species, including tomato and banana. Our data show that JUB1 overexpressors (JUB1-OXs) accumulate higher levels of proline than WT plants under control conditions, during the onset of drought stress, and thereafter. We identified that overexpression of JUB1 induces key proline biosynthesis and suppresses key proline degradation genes. Furthermore, bZIP63, the transcription factor involved in proline metabolism, was identified as a novel downstream target of JUB1 by Yeast One-Hybrid (Y1H) analysis and Chromatin immunoprecipitation (ChIP). However, based on Electrophoretic Mobility Shift Assay (EMSA), direct binding of JUB1 to bZIP63 could not be confirmed. Our data indicate that JUB1-OX plants exhibit reduced stomatal conductance under control conditions. However, selective overexpression of JUB1 in guard cells did not improve drought stress tolerance in Arabidopsis. Moreover, the drought-tolerant phenotype of JUB1 overexpressors does not solely depend on the transcriptional control of the DREB2A gene. Thus, our data suggest that JUB1 confers tolerance to drought stress by regulating multiple components. Until today, none of the previous studies on JUB1´s regulatory network focused on identifying protein-protein interactions. We, therefore, performed a yeast two-hybrid screen (Y2H) which identified several protein interactors of JUB1, two of which are the calcium-binding proteins CaM1 and CaM4. Both proteins interact with JUB1 in the nucleus of Arabidopsis protoplasts. Moreover, JUB1 is expressed with CaM1 and CaM4 under the same conditions. Since CaM1.1 and CaM4.1 encode proteins with identical amino acid sequences, all further experiments were performed with constructs involving the CaM4 coding sequence. Our data show that JUB1 harbors multiple CaM-binding sites, which are localized in both the N-terminal and C-terminal regions of the protein. One of the CaM-binding sites, localized in the DNA-binding domain of JUB1, was identified as a functional CaM-binding site since its mutation strongly reduced the binding of CaM4 to JUB1. Furthermore, JUB1 transactivates expression of the stress-related gene DREB2A in mesophyll cells; this effect is significantly reduced when the calcium-binding protein CaM4 is expressed as well. Overexpression of both genes in Arabidopsis results in early senescence observed through lower chlorophyll content and an enhanced expression of senescence-associated genes (SAGs) when compared with single JUB1 overexpressors. Our data also show that JUB1 and CaM4 proteins interact in senescent leaves, which have increased Ca2+ levels when compared to young leaves. Collectively, our data indicate that JUB1 activity towards its downstream targets is fine-tuned by calcium-binding proteins during leaf senescence.}, language = {en} } @phdthesis{Kunkel2023, author = {Kunkel, Stefanie}, title = {Green industry through industry 4.0? Expected and observed effects of digitalisation in industry for environmental sustainability}, doi = {10.25932/publishup-61395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613954}, school = {Universit{\"a}t Potsdam}, pages = {vii, 168}, year = {2023}, abstract = {Digitalisation in industry - also called "Industry 4.0" - is seen by numerous actors as an opportunity to reduce the environmental impact of the industrial sector. The scientific assessments of the effects of digitalisation in industry on environmental sustainability, however, are ambivalent. This cumulative dissertation uses three empirical studies to examine the expected and observed effects of digitalisation in industry on environmental sustainability. The aim of this dissertation is to identify opportunities and risks of digitalisation at different system levels and to derive options for action in politics and industry for a more sustainable design of digitalisation in industry. I use an interdisciplinary, socio-technical approach and look at selected countries of the Global South (Study 1) and the example of China (all studies). In the first study (section 2, joint work with Marcel Matthess), I use qualitative content analysis to examine digital and industrial policies from seven different countries in Africa and Asia for expectations regarding the impact of digitalisation on sustainability and compare these with the potentials of digitalisation for sustainability in the respective country contexts. The analysis reveals that the documents express a wide range of vague expectations that relate more to positive indirect impacts of information and communication technology (ICT) use, such as improved energy efficiency and resource management, and less to negative direct impacts of ICT, such as electricity consumption through ICT. In the second study (section 3, joint work with Marcel Matthess, Grischa Beier and Bing Xue), I conduct and analyse interviews with 18 industry representatives of the electronics industry from Europe, Japan and China on digitalisation measures in supply chains using qualitative content analysis. I find that while there are positive expectations regarding the effects of digital technologies on supply chain sustainability, their actual use and observable effects are still limited. Interview partners can only provide few examples from their own companies which show that sustainability goals have already been pursued through digitalisation of the supply chain or where sustainability effects, such as resource savings, have been demonstrably achieved. In the third study (section 4, joint work with Peter Neuh{\"a}usler, Melissa Dachrodt and Marcel Matthess), I conduct an econometric panel data analysis. I examine the relationship between the degree of Industry 4.0, energy consumption and energy intensity in ten manufacturing sectors in China between 2006 and 2019. The results suggest that overall, there is no significant relationship between the degree of Industry 4.0 and energy consumption or energy intensity in manufacturing sectors in China. However, differences can be found in subgroups of sectors. I find a negative correlation of Industry 4.0 and energy intensity in highly digitalised sectors, indicating an efficiency-enhancing effect of Industry 4.0 in these sectors. On the other hand, there is a positive correlation of Industry 4.0 and energy consumption for sectors with low energy consumption, which could be explained by the fact that digitalisation, such as the automation of previously mainly labour-intensive sectors, requires energy and also induces growth effects. In the discussion section (section 6) of this dissertation, I use the classification scheme of the three levels macro, meso and micro, as well as of direct and indirect environmental effects to classify the empirical observations into opportunities and risks, for example, with regard to the probability of rebound effects of digitalisation at the three levels. I link the investigated actor perspectives (policy makers, industry representatives), statistical data and additional literature across the system levels and consider political economy aspects to suggest fields of action for more sustainable (digitalised) industries. The dissertation thus makes two overarching contributions to the academic and societal discourse. First, my three empirical studies expand the limited state of research at the interface between digitalisation in industry and sustainability, especially by considering selected countries in the Global South and the example of China. Secondly, exploring the topic through data and methods from different disciplinary contexts and taking a socio-technical point of view, enables an analysis of (path) dependencies, uncertainties, and interactions in the socio-technical system across different system levels, which have often not been sufficiently considered in previous studies. The dissertation thus aims to create a scientifically and practically relevant knowledge basis for a value-guided, sustainability-oriented design of digitalisation in industry.}, language = {en} } @phdthesis{IlićPetković2023, author = {Ilić Petković, Nikoleta}, title = {Stars under influence: evidence of tidal interactions between stars and substellar companions}, doi = {10.25932/publishup-61597}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-615972}, school = {Universit{\"a}t Potsdam}, pages = {xi, 137}, year = {2023}, abstract = {Tidal interactions occur between gravitationally bound astrophysical bodies. If their spatial separation is sufficiently small, the bodies can induce tides on each other, leading to angular momentum transfer and altering of evolutionary path the bodies would have followed if they were single objects. The tidal processes are well established in the Solar planet-moon systems and close stellar binary systems. However, how do stars behave if they are orbited by a substellar companion (e.g. a planet or a brown dwarf) on a tight orbit? Typically, a substellar companion inside the corotation radius of a star will migrate toward the star as it loses orbital angular momentum. On the other hand, the star will gain angular momentum which has the potential to increase its rotation rate. The effect should be more pronounced if the substellar companion is more massive. As the stellar rotation rate and the magnetic activity level are coupled, the star should appear more magnetically active under the tidal influence of the orbiting substellar companion. However, the difficulty in proving that a star has a higher magnetic activity level due to tidal interactions lies in the fact that (I) substellar companions around active stars are easier to detect if they are more massive, leading to a bias toward massive companions around active stars and mimicking the tidal interaction effect, and that (II) the age of a main-sequence star cannot be easily determined, leaving the possibility that a star is more active due to its young age. In our work, we overcome these issues by employing wide stellar binary systems where one star hosts a substellar companion, and where the other star provides the magnetic activity baseline for the host star, assuming they have coevolved, and thereby provides the host's activity level if tidal interactions have no effect on it. Firstly, we find that extrasolar planets can noticeably increase the host star's X-ray luminosity and that the effect is more pronounced if the exoplanet is at least Jupiter-like in mass and close to the star. Further, we find that a brown dwarf will have an even stronger effect, as expected, and that the X-ray surface flux difference between the host star and the wide stellar companion is a significant outlier when compared to a large sample of similar wide binary systems without any known substellar companions. This result proves that substellar hosting wide binary systems can be good tools to reveal the tidal effect on host stars, and also show that the typical stellar age indicators as activity or rotation cannot be used for these stars. Finally, knowing that the activity difference is a good tracer of the substellar companion's tidal impact, we develop an analytical method to calculate the modified tidal quality factor Q' of individual host stars, which defines the tidal dissipation efficiency in the convective envelope of a given main-sequence star.}, language = {en} } @phdthesis{Leins2023, author = {Leins, Johannes A.}, title = {Combining model detail with large scales}, doi = {10.25932/publishup-58283}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582837}, school = {Universit{\"a}t Potsdam}, pages = {xv, 168}, year = {2023}, abstract = {The global climate crisis is significantly contributing to changing ecosystems, loss of biodiversity and is putting numerous species on the verge of extinction. In principle, many species are able to adapt to changing conditions or shift their habitats to more suitable regions. However, change is progressing faster than some species can adjust, or potential adaptation is blocked and disrupted by direct and indirect human action. Unsustainable anthropogenic land use in particular is one of the driving factors, besides global heating, for these ecologically critical developments. Precisely because land use is anthropogenic, it is also a factor that could be quickly and immediately corrected by human action. In this thesis, I therefore assess the impact of three climate change scenarios of increasing intensity in combination with differently scheduled mowing regimes on the long-term development and dispersal success of insects in Northwest German grasslands. The large marsh grasshopper (LMG, Stethophyma grossum, Linn{\´e} 1758) is used as a species of reference for the analyses. It inhabits wet meadows and marshes and has a limited, yet fairly good ability to disperse. Mowing and climate conditions affect the development and mortality of the LMG differently depending on its life stage. The specifically developed simulation model HiLEG (High-resolution Large Environmental Gradient) serves as a tool for investigating and projecting viability and dispersal success under different climate conditions and land use scenarios. It is a spatially explicit, stage- and cohort-based model that can be individually configured to represent the life cycle and characteristics of terrestrial insect species, as well as high-resolution environmental data and the occurrence of external disturbances. HiLEG is a freely available and adjustable software that can be used to support conservation planning in cultivated grasslands. In the three case studies of this thesis, I explore various aspects related to the structure of simulation models per se, their importance in conservation planning in general, and insights regarding the LMG in particular. It became apparent that the detailed resolution of model processes and components is crucial to project the long-term effect of spatially and temporally confined events. Taking into account conservation measures at the regional level has further proven relevant, especially in light of the climate crisis. I found that the LMG is benefiting from global warming in principle, but continues to be constrained by harmful mowing regimes. Land use measures could, however, be adapted in such a way that they allow the expansion and establishment of the LMG without overly affecting agricultural yields. Overall, simulation models like HiLEG can make an important contribution and add value to conservation planning and policy-making. Properly used, simulation results shed light on aspects that might be overlooked by subjective judgment and the experience of individual stakeholders. Even though it is in the nature of models that they are subject to limitations and only represent fragments of reality, this should not keep stakeholders from using them, as long as these limitations are clearly communicated. Similar to HiLEG, models could further be designed in such a way that not only the parameterization can be adjusted as required, but also the implementation itself can be improved and changed as desired. This openness and flexibility should become more widespread in the development of simulation models.}, language = {en} } @phdthesis{Folikumah2022, author = {Folikumah, Makafui Yao}, title = {Stimuli-promoted in situ formation of hydrogels with thiol/thioester containing peptide precursors}, doi = {10.25932/publishup-56971}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569713}, school = {Universit{\"a}t Potsdam}, pages = {159}, year = {2022}, abstract = {Hydrogels are potential synthetic ECM-like substitutes since they provide functional and structural similarities compared to soft tissues. They can be prepared by crosslinking of macromolecules or by polymerizing suitable precursors. The crosslinks are not necessarily covalent bonds, but could also be formed by physical interactions such as π-π interactions, hydrophobic interactions, or H-bonding. On demand in situ forming hydrogels have garnered increased interest especially for biomedical applications over preformed gels due to the relative ease of in vivo delivery and filling of cavities. The thiol-Michael addition reaction provides a straightforward and robust strategy for in situ gel formation with its fast reaction kinetics and ability to proceed under physiological conditions. The incorporation of a trigger function into a crosslinking system becomes even more interesting since gelling can be controlled with stimulus of choice. The use of small molar mass crosslinker precursors with active groups orthogonal to thiol-Michael reaction type electrophile provides the opportunity to implement an on-demand in situ crosslinking without compromising the fast reaction kinetics. It was postulated that short peptide sequences due to the broad range structural-function relations available with the different constituent amino acids, can be exploited for the realisation of stimuli-promoted in situ covalent crosslinking and gelation applications. The advantages of this system over conventional polymer-polymer hydrogel systems are the ability tune and predict material property at the molecular level. The main aim of this work was to develop a simplified and biologically-friendly stimuli-promoted in situ crosslinking and hydrogelation system using peptide mimetics as latent crosslinkers. The approach aims at using a single thiodepsipeptide sequence to achieve separate pH- and enzyme-promoted gelation systems with little modification to the thiodepsipeptide sequence. The realization of this aim required the completion of three milestones. In the first place, after deciding on the thiol-Michael reaction as an effective in situ crosslinking strategy, a thiodepsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) with expected propensity towards pH-dependent thiol-thioester exchange (TTE) activation, was proposed as a suitable crosslinker precursor for pH-promoted gelation system. Prior to the synthesis of the proposed peptide-mimetic, knowledge of the thiol-Michael reactivity of the would-be activated thiol moiety SH-Leu, which is internally embedded in the thiodepsipeptide was required. In line with pKa requirements for a successful TTE, the reactivity of a more acidic thiol, SH-Phe was also investigated to aid the selection of the best thiol to be incorporated in the thioester bearing peptide based crosslinker precursor. Using 'pseudo' 2D-NMR investigations, it was found that only reactions involving SH-Leu yielded the expected thiol-Michael product, an observation that was attributed to the steric hindrance of the bulkier nature of SH-Phe. The fast reaction rates and complete acrylate/maleimide conversion obtained with SH-Leu at pH 7.2 and higher aided the direct elimination of SH-Phe as a potential thiol for the synthesis of the peptide mimetic. Based on the initial studies, for the pH-promoted gelation system, the proposed Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH was kept unmodified. The subtle difference in pKa values between SH-Leu (thioester thiol) and the terminal cysteamine thiol from theoretical conditions should be enough to effect a 'pseudo' intramolecular TTE. In polar protic solvents and under basic aqueous conditions, TDP successfully undergoes a 'pseudo' intramolecular TTE reaction to yield an α,ω-dithiol tripeptide, HSLeu-Leu-Gly-NEtSH. The pH dependence of thiolate ion generation by the cysteamine thiol aided the incorporation of the needed stimulus (pH) for the overall success of TTE (activation step) - thiol-Michael addition (crosslinking) strategy. Secondly, with potential biomedical applications in focus, the susceptibility of TDP, like other thioesters, to intermolecular TTE reaction was probed with a group of thiols of varying thiol pKa values, since biological milieu characteristically contain peptide/protein thiols. L-cysteine, which is a biologically relevant thiol, and a small molecular weight thiol, methylthioglycolate both with relatively similar thiol pKa, values, led to an increase concentration of the dithiol crosslinker when reacted with TDP. In the presence of acidic thiols (p-NTP and 4MBA), a decrease in the dithiol concentration was observed, an observation that can be attributed to the inability of the TTE tetrahedral intermediate to dissociate into exchange products and is in line with pKa requirements for successful TTE reaction. These results additionally makes TDP more attractive and the potentially the first crosslinker precursor for applications in biologically relevant media. Finally, the ability of TDP to promote pH-sensitive in situ gel formation was probed with maleimide functionalized 4-arm polyethylene glycol polymers in tris-buffered media of varying pHs. When a 1:1 thiol: maleimide molar ratio was used, TDP-PEG4MAL hydrogels formed within 3, 12 and 24 hours at pH values of 8.5, 8.0 and 7.5 respectively. However, gelation times of 3, 5 and 30 mins were observed for the same pH trend when the thiol: maleimide molar was increased to 2:1. A direct correlation of thiol content with G' of the gels at each pH could also be drawn by comparing gels with thiol: maleimide ratios of 1:1 to those with 2:1 thiol: maleimide mole ratios. This is supported by the fact that the storage modulus (G') is linearly dependent on the crosslinking density of the polymer. The values of initial G′ for all gels ranged between (200 - 5000 Pa), which falls in the range of elasticities of certain tissue microenvironments for example brain tissue 200 - 1000 Pa and adipose tissue (2500 - 3500 Pa). Knowledge so far gained from the study on the ability to design and tune the exchange reaction of thioester containing peptide mimetic will give those working in the field further insight into the development of new sequences tailored towards specific applications. TTE substrate design using peptide mimetic as presented in this work has revealed interesting new insights considering the state-of-the-art. Using the results obtained as reference, the strategy provides a possibility to extend the concept to the controlled delivery of active molecules needed for other robust and high yielding crosslinking reactions for biomedical applications. Application for this sequentially coupled functional system could be seen e.g. in the treatment of inflamed tissues associated with urinary tract like bladder infections for which pH levels above 7 were reported. By the inclusion of cell adhesion peptide motifs, the hydrogel network formed at this pH could act as a new support layer for the healing of damage epithelium as shown in interfacial gel formation experiments using TDP and PEG4MAL droplets. The versatility of the thiodepsipeptide sequence, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-(TDPo) was extended for the design and synthesis of a MMP-sensitive 4-arm PEG-TDPo conjugate. The purported cleavage of TDPo at the Gly-SLeu bond yields active thiol units for subsequent reaction of orthogonal Michael acceptor moieties. One of the advantages of stimuli-promoted in situ crosslinking systems using short peptides should be the ease of design of required peptide molecules due to the predictability of peptide functions their sequence structure. Consequently the functionalisation of a 4-arm PEG core with the collagenase active TDPo sequence yielded an MMP-sensitive 4-arm thiodepsipeptide-PEG conjugate (PEG4TDPo) substrate. Cleavage studies using thiol flourometric assay in the presence of MMPs -2 and -9 confirmed the susceptibility of PEG4TDPo towards these enzymes. The resulting time-dependent increase in fluorescence intensity in the presence of thiol assay signifies the successful cleavage of TDPo at the Gly-SLeu bond as expected. It was observed that the cleavage studies with thiol flourometric assay introduces a sigmoid non-Michaelis-Menten type kinetic profile, hence making it difficult to accurately determine the enzyme cycling parameters, kcat and KM . Gelation studies with PEG4MAL at 10 \% wt. concentrations revealed faster gelation with MMP-2 than MMP-9 with 28 and 40 min gelation times respectively. Possible contributions by hydrolytic cleavage of PEG4TDPo has resulted in the gelation of PEG4MAL blank samples but only after 60 minutes of reaction. From theoretical considerations, the simultaneous gelation reaction would be expected to more negatively impact the enzymatic than hydrolytic cleavage. The exact contributions from hydrolytic cleavage of PEG4TDPo would however require additional studies. In summary this new and simplified in situ crosslinking system using peptide-based crosslinker precursors with tuneable properties exhibited in situ crosslinking gelation kinetics on similar levels with already active dithiols reported. The advantageous on-demand functionality associated with its pH-sensitivity and physiological compatibility makes it a strong candidate worth further research as biomedical applications in general and on-demand material synthesis is concerned. Results from MMP-promoted gelation system unveils a simple but unexplored approach for in situ synthesis of covalently crosslinked soft materials, that could lead to the development of an alternative pathway in addressing cancer metastasis by making use of MMP overexpression as a trigger. This goal has so far not being reach with MMP inhibitors despite the extensive work this regard.}, language = {en} } @phdthesis{GostkowskaLekner2024, author = {Gostkowska-Lekner, Natalia Katarzyna}, title = {Organic-inorganic hybrids based on P3HT and mesoporous silicon for thermoelectric applications}, doi = {10.25932/publishup-62047}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-620475}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2024}, abstract = {This thesis presents a comprehensive study on synthesis, structure and thermoelectric transport properties of organic-inorganic hybrids based on P3HT and porous silicon. The effect of embedding polymer in silicon pores on the electrical and thermal transport is studied. Morphological studies confirm successful polymer infiltration and diffusion doping with roughly 50\% of the pore space occupied by conjugated polymer. Synchrotron diffraction experiments reveal no specific ordering of the polymer inside the pores. P3HT-pSi hybrids show improved electrical transport by five orders of magnitude compared to porous silicon and power factor values comparable or exceeding other P3HT-inorganic hybrids. The analysis suggests different transport mechanisms in both materials. In pSi, the transport mechanism relates to a Meyer-Neldel compansation rule. The analysis of hybrids' data using the power law in Kang-Snyder model suggests that a doped polymer mainly provides charge carriers to the pSi matrix, similar to the behavior of a doped semiconductor. Heavily suppressed thermal transport in porous silicon is treated with a modified Landauer/Lundstrom model and effective medium theories, which reveal that pSi agrees well with the Kirkpatrick model with a 68\% percolation threshold. Thermal conductivities of hybrids show an increase compared to the empty pSi but the overall thermoelectric figure of merit ZT of P3HT-pSi hybrid exceeds both pSi and P3HT as well as bulk Si.}, language = {en} } @phdthesis{LopezGarcia2019, author = {L{\´o}pez Garc{\´i}a, Patricia}, title = {Coiled coils as mechanical building blocks}, doi = {10.25932/publishup-42956}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429568}, school = {Universit{\"a}t Potsdam}, pages = {xi, 130}, year = {2019}, abstract = {The natural abundance of Coiled Coil (CC) motifs in cytoskeleton and extracellular matrix proteins suggests that CCs play an important role as passive (structural) and active (regulatory) mechanical building blocks. CCs are self-assembled superhelical structures consisting of 2-7 α-helices. Self-assembly is driven by hydrophobic and ionic interactions, while the helix propensity of the individual helices contributes additional stability to the structure. As a direct result of this simple sequence-structure relationship, CCs serve as templates for protein design and sequences with a pre-defined thermodynamic stability have been synthesized de novo. Despite this quickly increasing knowledge and the vast number of possible CC applications, the mechanical function of CCs has been largely overlooked and little is known about how different CC design parameters determine the mechanical stability of CCs. Once available, this knowledge will open up new applications for CCs as nanomechanical building blocks, e.g. in biomaterials and nanobiotechnology. With the goal of shedding light on the sequence-structure-mechanics relationship of CCs, a well-characterized heterodimeric CC was utilized as a model system. The sequence of this model system was systematically modified to investigate how different design parameters affect the CC response when the force is applied to opposing termini in a shear geometry or separated in a zipper-like fashion from the same termini (unzip geometry). The force was applied using an atomic force microscope set-up and dynamic single-molecule force spectroscopy was performed to determine the rupture forces and energy landscape properties of the CC heterodimers under study. Using force as a denaturant, CC chain separation is initiated by helix uncoiling from the force application points. In the shear geometry, this allows uncoiling-assisted sliding parallel to the force vector or dissociation perpendicular to the force vector. Both competing processes involve the opening of stabilizing hydrophobic (and ionic) interactions. Also in the unzip geometry, helix uncoiling precedes the rupture of hydrophobic contacts. In a first series of experiments, the focus was placed on canonical modifications in the hydrophobic core and the helix propensity. Using the shear geometry, it was shown that both a reduced core packing and helix propensity lower the thermodynamic and mechanical stability of the CC; however, with different effects on the energy landscape of the system. A less tightly packed hydrophobic core increases the distance to the transition state, with only a small effect on the barrier height. This originates from a more dynamic and less tightly packed core, which provides more degrees of freedom to respond to the applied force in the direction of the force vector. In contrast, a reduced helix propensity decreases both the distance to the transition state and the barrier height. The helices are 'easier' to unfold and the remaining structure is less thermodynamically stable so that dissociation perpendicular to the force axis can occur at smaller deformations. Having elucidated how canonical sequence modifications influence CC mechanics, the pulling geometry was investigated in the next step. Using one and the same sequence, the force application points were exchanged and two different shear and one unzipping geometry were compared. It was shown that the pulling geometry determines the mechanical stability of the CC. Different rupture forces were observed in the different shear as well as in the unzipping geometries, suggesting that chain separation follows different pathways on the energy landscape. Whereas the difference between CC shearing and unzipping was anticipated and has also been observed for other biological structures, the observed difference for the two shear geometries was less expected. It can be explained with the structural asymmetry of the CC heterodimer. It is proposed that the direction of the α-helices, the different local helix propensities and the position of a polar asparagine in the hydrophobic core are responsible for the observed difference in the chain separation pathways. In combination, these factors are considered to influence the interplay between processes parallel and perpendicular to the force axis. To obtain more detailed insights into the role of helix stability, helical turns were reinforced locally using artificial constraints in the form of covalent and dynamic 'staples'. A covalent staple bridges to adjacent helical turns, thus protecting them against uncoiling. The staple was inserted directly at the point of force application in one helix or in the same terminus of the other helix, which did not experience the force directly. It was shown that preventing helix uncoiling at the point of force application reduces the distance to the transition state while slightly increasing the barrier height. This confirms that helix uncoiling is critically important for CC chain separation. When inserted into the second helix, this stabilizing effect is transferred across the hydrophobic core and protects the force-loaded turns against uncoiling. If both helices were stapled, no additional increase in mechanical stability was observed. When replacing the covalent staple with a dynamic metal-coordination bond, a smaller decrease in the distance to the transition was observed, suggesting that the staple opens up while the CC is under load. Using fluorinated amino acids as another type of non-natural modification, it was investigated how the enhanced hydrophobicity and the altered packing at the interface influences CC mechanics. The fluorinated amino acid was inserted into one central heptad of one or both α-helices. It was shown that this substitution destabilized the CC thermodynamically and mechanically. Specifically, the barrier height was decreased and the distance to the transition state increased. This suggests that a possible stabilizing effect of the increased hydrophobicity is overruled by a disturbed packing, which originates from a bad fit of the fluorinated amino acid into the local environment. This in turn increases the flexibility at the interface, as also observed for the hydrophobic core substitution described above. In combination, this confirms that the arrangement of the hydrophobic side chains is an additional crucial factor determining the mechanical stability of CCs. In conclusion, this work shows that knowledge of the thermodynamic stability alone is not sufficient to predict the mechanical stability of CCs. It is the interplay between helix propensity and hydrophobic core packing that defines the sequence-structure-mechanics relationship. In combination, both parameters determine the relative contribution of processes parallel and perpendicular to the force axis, i.e. helix uncoiling and uncoiling-assisted sliding as well as dissociation. This new mechanistic knowledge provides insight into the mechanical function of CCs in tissues and opens up the road for designing CCs with pre-defined mechanical properties. The library of mechanically characterized CCs developed in this work is a powerful starting point for a wide spectrum of applications, ranging from molecular force sensors to mechanosensitive crosslinks in protein nanostructures and synthetic extracellular matrix mimics.}, language = {en} }