@phdthesis{Hoffmann2019, author = {Hoffmann, Mathias}, title = {Improving measurement and modelling approaches of the closed chamber method to better assess dynamics and drivers of carbon based greenhouse gas emissions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421302}, school = {Universit{\"a}t Potsdam}, pages = {xx, 204, xxix}, year = {2019}, abstract = {The trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components. However, the broad range of different chamber designs, related operational procedures and data-processing strategies which are described in the scientific literature contribute to the overall uncertainty of closed chamber-based emission estimates. Hence, the outcomes of meta-analyses are limited, since these methodical differences hamper the comparability between studies. Thus, a standardization of closed chamber data acquisition and processing is much-needed. Within this thesis, a set of case studies were performed to: (I) develop standardized routines for an unbiased data acquisition and processing, with the aim of providing traceable, reproducible and comparable closed chamber based C emission estimates; (II) validate those routines by comparing C emissions derived using closed chambers with independent C emission estimates; and (III) reveal processes driving the spatio-temporal dynamics of C emissions by developing (data processing based) flux separation approaches. The case studies showed: (I) the importance to test chamber designs under field conditions for an appropriate sealing integrity and to ensure an unbiased flux measurement. Compared to the sealing integrity, the use of a pressure vent and fan was of minor importance, affecting mainly measurement precision; (II) that the developed standardized data processing routines proved to be a powerful and flexible tool to estimate C gas emissions and that this tool can be successfully applied on a broad range of flux data sets from very different ecosystem; (III) that automatic chamber measurements display temporal dynamics of CO2 and CH4 fluxes very well and most importantly, that they accurately detect small-scale spatial differences in the development of soil C when validated against repeated soil inventories; and (IV) that a simple algorithm to separate CH4 fluxes into ebullition and diffusion improves the identification of environmental drivers, which allows for an accurate gap-filling of measured CH4 fluxes. Overall, the proposed standardized data acquisition and processing routines strongly improved the detection accuracy and precision of source/sink patterns of gaseous C emissions. Hence, future studies, which consider the recommended improvements, will deliver valuable new data and insights to broaden our understanding of spatio-temporal C gas dynamics, their particular environmental drivers and underlying processes.}, language = {en} } @phdthesis{Paganini2018, author = {Paganini, Claudio Francesco}, title = {The role of trapping in black hole spacetimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414686}, school = {Universit{\"a}t Potsdam}, pages = {v, 138}, year = {2018}, abstract = {In the here presented work we discuss a series of results that are all in one way or another connected to the phenomenon of trapping in black hole spacetimes. First we present a comprehensive review of the Kerr-Newman-Taub-NUT-de-Sitter family of black hole spacetimes and their most important properties. From there we go into a detailed analysis of the bahaviour of null geodesics in the exterior region of a sub-extremal Kerr spacetime. We show that most well known fundamental properties of null geodesics can be represented in one plot. In particular, one can see immediately that the ergoregion and trapping are separated in phase space. We then consider the sets of future/past trapped null geodesics in the exterior region of a sub-extremal Kerr-Newman-Taub-NUT spacetime. We show that from the point of view of any timelike observer outside of such a black hole, trapping can be understood as two smooth sets of spacelike directions on the celestial sphere of the observer. Therefore the topological structure of the trapped set on the celestial sphere of any observer is identical to that in Schwarzschild. We discuss how this is relevant to the black hole stability problem. In a further development of these observations we introduce the notion of what it means for the shadow of two observers to be degenerate. We show that, away from the axis of symmetry, no continuous degeneration exists between the shadows of observers at any point in the exterior region of any Kerr-Newman black hole spacetime of unit mass. Therefore, except possibly for discrete changes, an observer can, by measuring the black holes shadow, determine the angular momentum and the charge of the black hole under observation, as well as the observer's radial position and angle of elevation above the equatorial plane. Furthermore, his/her relative velocity compared to a standard observer can also be measured. On the other hand, the black hole shadow does not allow for a full parameter resolution in the case of a Kerr-Newman-Taub-NUT black hole, as a continuous degeneration relating specific angular momentum, electric charge, NUT charge and elevation angle exists in this case. We then use the celestial sphere to show that trapping is a generic feature of any black hole spacetime. In the last chapter we then prove a generalization of the mode stability result of Whiting (1989) for the Teukolsky equation for the case of real frequencies. The main result of the last chapter states that a separated solution of the Teukolsky equation governing massless test fields on the Kerr spacetime, which is purely outgoing at infinity, and purely ingoing at the horizon, must vanish. This has the consequence, that for real frequencies, there are linearly independent fundamental solutions of the radial Teukolsky equation which are purely ingoing at the horizon, and purely outgoing at infinity, respectively. This fact yields a representation formula for solutions of the inhomogenous Teukolsky equation, and was recently used by Shlapentokh-Rothman (2015) for the scalar wave equation.}, language = {en} } @phdthesis{Kolk2019, author = {Kolk, Jens}, title = {The long-term legacy of historical land cover changes}, doi = {10.25932/publishup-43939}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439398}, school = {Universit{\"a}t Potsdam}, pages = {196}, year = {2019}, abstract = {Over the last years there is an increasing awareness that historical land cover changes and associated land use legacies may be important drivers for present-day species richness and biodiversity due to time-delayed extinctions or colonizations in response to historical environmental changes. Historically altered habitat patches may therefore exhibit an extinction debt or colonization credit and can be expected to lose or gain species in the future. However, extinction debts and colonization credits are difficult to detect and their actual magnitudes or payments have rarely been quantified because species richness patterns and dynamics are also shaped by recent environmental conditions and recent environmental changes. In this thesis we aimed to determine patterns of herb-layer species richness and recent species richness dynamics of forest herb layer plants and link those patterns and dynamics to historical land cover changes and associated land use legacies. The study was conducted in the Prignitz, NE-Germany, where the forest distribution remained stable for the last ca. 100 years but where a) the deciduous forest area had declined by more than 90 per cent (leaving only remnants of "ancient forests"), b) small new forests had been established on former agricultural land ("post-agricultural forests"). Here, we analyzed the relative importance of land use history and associated historical land cover changes for herb layer species richness compared to recent environmental factors and determined magnitudes of extinction debt and colonization credit and their payment in ancient and post-agricultural forests, respectively. We showed that present-day species richness patterns were still shaped by historical land cover changes that ranged back to more than a century. Although recent environmental conditions were largely comparable we found significantly more forest specialists, species with short-distance dispersal capabilities and clonals in ancient forests than in post-agricultural forests. Those species richness differences were largely contingent to a colonization credit in post-agricultural forests that ranged up to 9 species (average 4.7), while the extinction debt in ancient forests had almost completely been paid. Environmental legacies from historical agricultural land use played a minor role for species richness differences. Instead, patch connectivity was most important. Species richness in ancient forests was still dependent on historical connectivity, indicating a last glimpse of an extinction debt, and the colonization credit was highest in isolated post-agricultural forests. In post-agricultural forests that were better connected or directly adjacent to ancient forest patches the colonization credit was way smaller and we were able to verify a gradual payment of the colonization credit from 2.7 species to 1.5 species over the last six decades.}, language = {en} } @phdthesis{Trautmann2022, author = {Trautmann, Tina}, title = {Understanding global water storage variations using model-data integration}, doi = {10.25932/publishup-56595}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565954}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 141}, year = {2022}, abstract = {Climate change is one of the greatest challenges to humanity in this century, and most noticeable consequences are expected to be impacts on the water cycle - in particular the distribution and availability of water, which is fundamental for all life on Earth. In this context, it is essential to better understand where and when water is available and what processes influence variations in water storages. While estimates of the overall terrestrial water storage (TWS) variations are available from the GRACE satellites, these represent the vertically integrated signal over all water stored in ice, snow, soil moisture, groundwater and surface water bodies. Therefore, complementary observational data and hydrological models are still required to determine the partitioning of the measured signal among different water storages and to understand the underlying processes. However, the application of large-scale observational data is limited by their specific uncertainties and the incapacity to measure certain water fluxes and storages. Hydrological models, on the other hand, vary widely in their structure and process-representation, and rarely incorporate additional observational data to minimize uncertainties that arise from their simplified representation of the complex hydrologic cycle. In this context, this thesis aims to contribute to improving the understanding of global water storage variability by combining simple hydrological models with a variety of complementary Earth observation-based data. To this end, a model-data integration approach is developed, in which the parameters of a parsimonious hydrological model are calibrated against several observational constraints, inducing GRACE TWS, simultaneously, while taking into account each data's specific strengths and uncertainties. This approach is used to investigate 3 specific aspects that are relevant for modelling and understanding the composition of large-scale TWS variations. The first study focusses on Northern latitudes, where snow and cold-region processes define the hydrological cycle. While the study confirms previous findings that seasonal dynamics of TWS are dominated by the cyclic accumulation and melt of snow, it reveals that inter-annual TWS variations on the contrary, are determined by variations in liquid water storages. Additionally, it is found to be important to consider the impact of compensatory effects of spatially heterogeneous hydrological variables when aggregating the contribution of different storage components over large areas. Hence, the determinants of TWS variations are scale-dependent and underlying driving mechanism cannot be simply transferred between spatial and temporal scales. These findings are supported by the second study for the global land areas beyond the Northern latitudes as well. This second study further identifies the considerable impact of how vegetation is represented in hydrological models on the partitioning of TWS variations. Using spatio-temporal varying fields of Earth observation-based data to parameterize vegetation activity not only significantly improves model performance, but also reduces parameter equifinality and process uncertainties. Moreover, the representation of vegetation drastically changes the contribution of different water storages to overall TWS variability, emphasizing the key role of vegetation for water allocation, especially between sub-surface and delayed water storages. However, the study also identifies parameter equifinality regarding the decay of sub-surface and delayed water storages by either evapotranspiration or runoff, and thus emphasizes the need for further constraints hereof. The third study focuses on the role of river water storage, in particular whether it is necessary to include computationally expensive river routing for model calibration and validation against the integrated GRACE TWS. The results suggest that river routing is not required for model calibration in such a global model-data integration approach, due to the larger influence other observational constraints, and the determinability of certain model parameters and associated processes are identified as issues of greater relevance. In contrast to model calibration, considering river water storage derived from routing schemes can already significantly improve modelled TWS compared to GRACE observations, and thus should be considered for model evaluation against GRACE data. Beyond these specific findings that contribute to improved understanding and modelling of large-scale TWS variations, this thesis demonstrates the potential of combining simple modeling approaches with diverse Earth observational data to improve model simulations, overcome inconsistencies of different observational data sets, and identify areas that require further research. These findings encourage future efforts to take advantage of the increasing number of diverse global observational data.}, language = {en} } @phdthesis{Brenner2022, author = {Brenner, Andri Caspar}, title = {Sustainable urban growth}, doi = {10.25932/publishup-55522}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555223}, school = {Universit{\"a}t Potsdam}, pages = {231}, year = {2022}, abstract = {This dissertation explores the determinants for sustainable and socially optimalgrowth in a city. Two general equilibrium models establish the base for this evaluation, each adding its puzzle piece to the urban sustainability discourse and examining the role of non-market-based and market-based policies for balanced growth and welfare improvements in different theory settings. Sustainable urban growth either calls for policy actions or a green energy transition. Further, R\&D market failures can pose severe challenges to the sustainability of urban growth and the social optimality of decentralized allocation decisions. Still, a careful (holistic) combination of policy instruments can achieve sustainable growth and even be first best.}, language = {en} } @phdthesis{Niemz2022, author = {Niemz, Peter}, title = {Imaging and modeling of hydraulic fractures in crystalline rock via induced seismic activity}, doi = {10.25932/publishup-55659}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-556593}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2022}, abstract = {Enhanced geothermal systems (EGS) are considered a cornerstone of future sustainable energy production. In such systems, high-pressure fluid injections break the rock to provide pathways for water to circulate in and heat up. This approach inherently induces small seismic events that, in rare cases, are felt or can even cause damage. Controlling and reducing the seismic impact of EGS is crucial for a broader public acceptance. To evaluate the applicability of hydraulic fracturing (HF) in EGS and to improve the understanding of fracturing processes and the hydromechanical relation to induced seismicity, six in-situ, meter-scale HF experiments with different injection schemes were performed under controlled conditions in crystalline rock in a depth of 410 m at the {\"A}sp{\"o} Hard Rock Laboratory (Sweden). I developed a semi-automated, full-waveform-based detection, classification, and location workflow to extract and characterize the acoustic emission (AE) activity from the continuous recordings of 11 piezoelectric AE sensors. Based on the resulting catalog of 20,000 AEs, with rupture sizes of cm to dm, I mapped and characterized the fracture growth in great detail. The injection using a novel cyclic injection scheme (HF3) had a lower seismic impact than the conventional injections. HF3 induced fewer AEs with a reduced maximum magnitude and significantly larger b-values, implying a decreased number of large events relative to the number of small ones. Furthermore, HF3 showed an increased fracture complexity with multiple fractures or a fracture network. In contrast, the conventional injections developed single, planar fracture zones (Publication 1). An independent, complementary approach based on a comparison of modeled and observed tilt exploits transient long-period signals recorded at the horizontal components of two broad-band seismometers a few tens of meters apart from the injections. It validated the efficient creation of hydraulic fractures and verified the AE-based fracture geometries. The innovative joint analysis of AEs and tilt signals revealed different phases of the fracturing process, including the (re-)opening, growth, and aftergrowth of fractures, and provided evidence for the reactivation of a preexisting fault in one of the experiments (Publication 2). A newly developed network-based waveform-similarity analysis applied to the massive AE activity supports the latter finding. To validate whether the reduction of the seismic impact as observed for the cyclic injection schemes during the {\"A}sp{\"o} mine-scale experiments is transferable to other scales, I additionally calculated energy budgets for injection experiments from previously conducted laboratory tests and from a field application. Across all three scales, the cyclic injections reduce the seismic impact, as depicted by smaller maximum magnitudes, larger b-values, and decreased injection efficiencies (Publication 3).}, language = {en} } @phdthesis{Neuendorf2022, author = {Neuendorf, Claudia}, title = {Leistungsstarke Sch{\"u}lerinnen und Sch{\"u}ler in Deutschland}, doi = {10.25932/publishup-56470}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564702}, school = {Universit{\"a}t Potsdam}, pages = {203}, year = {2022}, abstract = {Die vorliegende kumulative Promotionsarbeit besch{\"a}ftigt sich mit leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern, die seit 2015 in der deutschen Bildungspolitik, zum Beispiel im Rahmen von F{\"o}rderprogrammen wieder mehr Raum einnehmen, nachdem in Folge des „PISA-Schocks" im Jahr 2000 zun{\"a}chst der Fokus st{\"a}rker auf den Risikogruppen lag. W{\"a}hrend leistungsst{\"a}rkere Sch{\"u}lerinnen und Sch{\"u}ler in der {\"o}ffentlichen Wahrnehmung h{\"a}ufig mit „(Hoch-)Begabten" identifiziert werden, geht die Arbeit {\"u}ber die traditionelle Begabungsforschung, die eine generelle Intelligenz als Grundlage f{\"u}r Leistungsf{\"a}higkeit von Sch{\"u}lerinnen und Sch{\"u}lern begreift und beforscht, hinaus. Stattdessen l{\"a}sst sich eher in den Bereich der Talentforschung einordnen, die den Fokus weg von allgemeinen Begabungen auf spezifische Pr{\"a}diktoren und Outcomes im individuellen Entwicklungsverlauf legt. Der Fokus der Arbeit liegt daher nicht auf Intelligenz als Potenzial, sondern auf der aktuellen schulischen Leistung, die als Ergebnis und Ausgangspunkt von Entwicklungsprozessen in einer Leistungsdom{\"a}ne doppelte Bedeutung erh{\"a}lt. Die Arbeit erkennt die Vielgestaltigkeit des Leistungsbegriffs an und ist bestrebt, neue Anl{\"a}sse zu schaffen, {\"u}ber den Leistungsbegriff und seine Operationalisierung in der Forschung zu diskutieren. Hierf{\"u}r wird im ersten Teil ein systematisches Review zur Operationalisierung von Leistungsst{\"a}rke durchgef{\"u}hrt (Artikel I). Es werden Faktoren herausgearbeitet, auf welchen sich die Operationalisierungen unterscheiden k{\"o}nnen. Weiterhin wird ein {\"U}berblick gegeben, wie Studien zu Leistungsstarken sich seit dem Jahr 2000 auf diesen Dimensionen verorten lassen. Es zeigt sich, dass eindeutige Konventionen zur Definition schulischer Leistungsst{\"a}rke noch nicht existieren, woraus folgt, dass Ergebnisse aus Studien, die sich mit leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern besch{\"a}ftigen, nur bedingt miteinander vergleichbar sind. Im zweiten Teil der Arbeit wird im Rahmen zwei weiterer Artikel, welche sich mit der Leistungsentwicklung (Artikel II) und der sozialen Einbindung (Artikel III) von leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern befassen, darauf aufbauend der Ansatz verfolgt, die Variabilit{\"a}t von Ergebnissen {\"u}ber verschiedene Operationalisierungen von Leistungsst{\"a}rke deutlich zu machen. Damit wird unter anderem auch die k{\"u}nftige Vergleichbarkeit mit anderen Studien erleichtert. Genutzt wird dabei das Konzept der Multiversumsanalyse (Steegen et al., 2016), bei welcher viele parallele Spezifikationen, die zugleich sinnvolle Alternativen f{\"u}r die Operationalisierung darstellen, nebeneinandergestellt und in ihrem Effekt verglichen werden (Jansen et al., 2021). Die Multiversumsanalyse kn{\"u}pft konzeptuell an das bereits vor l{\"a}ngerem entwickelte Forschungsprogramm des kritischen Multiplismus an (Patry, 2013; Shadish, 1986, 1993), erh{\"a}lt aber als spezifische Methode aktuell im Rahmen der Replizierbarkeitskrise in der Psychologie eine besondere Bedeutung. Dabei st{\"u}tzt sich die vorliegende Arbeit auf die Sekund{\"a}ranalyse großangelegter Schulleistungsstudien, welche den Vorteil besitzen, dass eine große Zahl an Datenpunkten (Variablen und Personen) zur Verf{\"u}gung steht, um Effekte unterschiedlicher Operationalisierungen zu vergleichen. Inhaltlich greifen Artikel II und III Themen auf, die in der wissenschaftlichen und gesellschaftlichen Diskussion zu Leistungsstarken und ihrer Wahrnehmung in der {\"O}ffentlichkeit immer wieder aufscheinen: In Artikel II wird zun{\"a}chst die Frage gestellt, ob Leistungsstarke bereits im aktuellen Regelunterricht einen kumulativen Vorteil gegen{\"u}ber ihren weniger leistungsstarken Mitsch{\"u}lerinnen und Mitsch{\"u}lern haben (Matth{\"a}us-Effekt). Die Ergebnisse zeigen, dass an Gymnasien keineswegs von sich vergr{\"o}ßernden Unterschieden gesprochen werden kann. Im Gegenteil, es verringerte sich im Laufe der Sekundarstufe der Abstand zwischen den Gruppen, indem die Lernraten bei leistungsschw{\"a}cheren Sch{\"u}lerinnen und Sch{\"u}lern h{\"o}her waren. Artikel III hingegen betrifft die soziale Wahrnehmung von leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern. Auch hier h{\"a}lt sich in der {\"o}ffentlichen Diskussion die Annahme, dass h{\"o}here Leistungen mit Nachteilen in der sozialen Integration einhergehen k{\"o}nnten, was sich auch in Studien widerspiegelt, die sich mit Geschlechterstereotypen Jugendlicher in Bezug auf Schulleistung besch{\"a}ftigen. In Artikel III wird unter anderem erneut das Potenzial der Multiversumsanalyse genutzt, um die Variation des Zusammenhangs {\"u}ber Operationalisierungen von Leistungsst{\"a}rke zu beschreiben. Es zeigt sich unter unterschiedlichen Operationalisierungen von Leistungsst{\"a}rke und {\"u}ber verschiedene Facetten sozialer Integration hinweg, dass die Zusammenh{\"a}nge zwischen Leistung und sozialer Integration insgesamt leicht positiv ausfallen. Annahmen, die auf differenzielle Effekte f{\"u}r Jungen und M{\"a}dchen oder f{\"u}r unterschiedliche F{\"a}cher abzielen, finden in diesen Analysen keine Best{\"a}tigung. Die Dissertation zeigt, dass der Vergleich unterschiedlicher Ans{\"a}tze zur Operationalisierung von Leistungsst{\"a}rke — eingesetzt im Rahmen eines kritischen Multiplismus — das Verst{\"a}ndnis von Ph{\"a}nomenen vertiefen kann und auch das Potenzial hat, Theorieentwicklung voranzubringen.}, language = {de} } @phdthesis{Schemenz2022, author = {Schemenz, Victoria}, title = {Correlations between osteocyte lacuno-canalicular network and material characteristics in bone adaptation and regeneration}, doi = {10.25932/publishup-55959}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559593}, school = {Universit{\"a}t Potsdam}, pages = {3, xii, 146}, year = {2022}, abstract = {The complex hierarchical structure of bone undergoes a lifelong remodeling process, where it adapts to mechanical needs. Hereby, bone resorption by osteoclasts and bone formation by osteoblasts have to be balanced to sustain a healthy and stable organ. Osteocytes orchestrate this interplay by sensing mechanical strains and translating them into biochemical signals. The osteocytes are located in lacunae and are connected to one another and other bone cells via cell processes through small channels, the canaliculi. Lacunae and canaliculi form a network (LCN) of extracellular spaces that is able to transport ions and enables cell-to-cell communication. Osteocytes might also contribute to mineral homeostasis by direct interactions with the surrounding matrix. If the LCN is acting as a transport system, this should be reflected in the mineralization pattern. The central hypothesis of this thesis is that osteocytes are actively changing their material environment. Characterization methods of material science are used to achieve the aim of detecting traces of this interaction between osteocytes and the extracellular matrix. First, healthy murine bones were characterized. The properties analyzed were then compared with three murine model systems: 1) a loading model, where a bone of the mouse was loaded during its life time; 2) a healing model, where a bone of the mouse was cut to induce a healing response; and 3) a disease model, where the Fbn1 gene is dysfunctional causing defects in the formation of the extracellular tissue. The measurement strategy included routines that make it possible to analyze the organization of the LCN and the material components (i.e., the organic collagen matrix and the mineral particles) in the same bone volumes and compare the spatial distribution of different data sets. The three-dimensional network architecture of the LCN is visualized by confocal laser scanning microscopy (CLSM) after rhodamine staining and is then subsequently quantified. The calcium content is determined via quantitative backscattered electron imaging (qBEI), while small- and wide-angle X-ray scattering (SAXS and WAXS) are employed to determine the thickness and length of local mineral particles. First, tibiae cortices of healthy mice were characterized to investigate how changes in LCN architecture can be attributed to interactions of osteocytes with the surrounding bone matrix. The tibial mid-shaft cross-sections showed two main regions, consisting of a band with unordered LCN surrounded by a region with ordered LCN. The unordered region is a remnant of early bone formation and exhibited short and thin mineral particles. The surrounding, more aligned bone showed ordered and dense LCN as well as thicker and longer mineral particles. The calcium content was unchanged between the two regions. In the mouse loading model, the left tibia underwent two weeks of mechanical stimulation, which results in increased bone formation and decreased resorption in skeletally mature mice. Here the specific research question addressed was how do bone material characteristics change at (re)modeling sites? The new bone formed in response to mechanical stimulation showed similar properties in terms of the mineral particles, like the ordered calcium region but lower calcium content compared to the right, non-loaded control bone of the same mice. There was a clear, recognizable border between mature and newly formed bone. Nevertheless, some canaliculi went through this border connecting the LCN of mature and newly formed bone. Additionally, the question should be answered whether the LCN topology and the bone matrix material properties adapt to loading. Although, mechanically stimulated bones did not show differences in calcium content compared to controls, different correlations were found between the local LCN density and the local Ca content depending on whether the bone was loaded or not. These results suggest that the LCN may serve as a mineral reservoir. For the healing model, the femurs of mice underwent an osteotomy, stabilized with an external fixator and were allowed to heal for 21 days. Thus, the spatial variations in the LCN topology with mineral properties within different tissue types and their interfaces, namely calcified cartilage, bony callus and cortex, could be simultaneously visualized and compared in this model. All tissue types showed structural differences across multiple length scales. Calcium content increased and became more homogeneous from calcified cartilage to bony callus to lamellar cortical bone. The degree of LCN organization increased as well, while the lacunae became smaller, as did the lacunar density between these different tissue types that make up the callus. In the calcified cartilage, the mineral particles were short and thin. The newly formed callus exhibited thicker mineral particles, which still had a low degree of orientation. While most of the callus had a woven-like structure, it also served as a scaffold for more lamellar tissue at the edges. The lamelar bone callus showed thinner mineral particles, but a higher degree of alignment in both, mineral particles and the LCN. The cortex showed the highest values for mineral length, thickness and degree of orientation. At the same time, the lacunae number density was 34\% lower and the lacunar volume 40\% smaller compared to bony callus. The transition zone between cortical and callus regions showed a continuous convergence of bone mineral properties and lacunae shape. Although only a few canaliculi connected callus and the cortical region, this indicates that communication between osteocytes of both tissues should be possible. The presented correlations between LCN architecture and mineral properties across tissue types may suggest that osteocytes have an active role in mineralization processes of healing. A mouse model for the disease marfan syndrome, which includes a genetic defect in the fibrillin-1 gene, was investigated. In humans, Marfan syndrome is characterized by a range of clinical symptoms such as long bone overgrowth, loose joints, reduced bone mineral density, compromised bone microarchitecture, and increased fracture rates. Thus, fibrillin-1 seems to play a role in the skeletal homeostasis. Therefore, the present work studied how marfan syndrome alters LCN architecture and the surrounding bone matrix. The mice with marfan syndrome showed longer tibiae than their healthy littermates from an age of seven weeks onwards. In contrast, the cortical development appeared retarded, which was observed across all measured characteristics, i. e. lower endocortical bone formation, looser and less organized lacuno-canalicular network, less collagen orientation, thinner and shorter mineral particles. In each of the three model systems, this study found that changes in the LCN architecture spatially correlated with bone matrix material parameters. While not knowing the exact mechanism, these results provide indications that osteocytes can actively manipulate a mineral reservoir located around the canaliculi to make a quickly accessible contribution to mineral homeostasis. However, this interaction is most likely not one-sided, but could be understood as an interplay between osteocytes and extra-cellular matrix, since the bone matrix contains biochemical signaling molecules (e.g. non-collagenous proteins) that can change osteocyte behavior. Bone (re)modeling can therefore not only be understood as a method for removing defects or adapting to external mechanical stimuli, but also for increasing the efficiency of possible osteocyte-mineral interactions during bone homeostasis. With these findings, it seems reasonable to consider osteocytes as a target for drug development related to bone diseases that cause changes in bone composition and mechanical properties. It will most likely require the combined effort of materials scientists, cell biologists, and molecular biologists to gain a deeper understanding of how bone cells respond to their material environment.}, language = {en} } @phdthesis{Forster2021, author = {Forster, Florian}, title = {Continuous microgravity monitoring of the Þeistareykir geothermal field (North Iceland)}, doi = {10.25932/publishup-54851}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548517}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 164}, year = {2021}, abstract = {In my doctoral thesis, I examine continuous gravity measurements for monitoring of the geothermal site at Þeistareykir in North Iceland. With the help of high-precision superconducting gravity meters (iGravs), I investigate underground mass changes that are caused by operation of the geothermal power plant (i.e. by extraction of hot water and reinjection of cold water). The overall goal of this research project is to make a statement about the sustainable use of the geothermal reservoir, from which also the Icelandic energy supplier and power plant operator Landsvirkjun should benefit. As a first step, for investigating the performance and measurement stability of the gravity meters, in summer 2017, I performed comparative measurements at the gravimetric observatory J9 in Strasbourg. From the three-month gravity time series, I examined calibration, noise and drift behaviour of the iGravs in comparison to stable long-term time series of the observatory superconducting gravity meters. After preparatory work in Iceland (setup of gravity stations, additional measuring equipment and infrastructure, discussions with Landsvirkjun and meetings with the Icelandic partner institute ISOR), gravity monitoring at Þeistareykir was started in December 2017. With the help of the iGrav records of the initial 18 months after start of measurements, I carried out the same investigations (on calibration, noise and drift behaviour) as in J9 to understand how the transport of the superconducting gravity meters to Iceland may influence instrumental parameters. In the further course of this work, I focus on modelling and reduction of local gravity contributions at Þeistareykir. These comprise additional mass changes due to rain, snowfall and vertical surface displacements that superimpose onto the geothermal signal of the gravity measurements. For this purpose, I used data sets from additional monitoring sensors that are installed at each gravity station and adapted scripts for hydro-gravitational modelling. The third part of my thesis targets geothermal signals in the gravity measurements. Together with my PhD colleague Nolwenn Portier from France, I carried out additional gravity measurements with a Scintrex CG5 gravity meter at 26 measuring points within the geothermal field in the summers of 2017, 2018 and 2019. These annual time-lapse gravity measurements are intended to increase the spatial coverage of gravity data from the three continuous monitoring stations to the entire geothermal field. The combination of CG5 and iGrav observations, as well as annual reference measurements with an FG5 absolute gravity meter represent the hybrid gravimetric monitoring method for Þeistareykir. Comparison of the gravimetric data to local borehole measurements (of groundwater levels, geothermal extraction and injection rates) is used to relate the observed gravity changes to the actually extracted (and reinjected) geothermal fluids. An approach to explain the observed gravity signals by means of forward modelling of the geothermal production rate is presented at the end of the third (hybrid gravimetric) study. Further modelling with the help of the processed gravity data is planned by Landsvirkjun. In addition, the experience from time-lapse and continuous gravity monitoring will be used for future gravity measurements at the Krafla geothermal field 22 km south-east of Þeistareykir.}, language = {en} } @phdthesis{Canil2021, author = {Canil, Laura}, title = {Tuning Interfacial Properties in Perovskite Solar Cells through Defined Molecular Assemblies}, doi = {10.25932/publishup-54633}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-546333}, school = {Universit{\"a}t Potsdam}, pages = {vii, 157}, year = {2021}, abstract = {In the frame of a world fighting a dramatic global warming caused by human-related activities, research towards the development of renewable energies plays a crucial role. Solar energy is one of the most important clean energy sources and its role in the satisfaction of the global energy demand is set to increase. In this context, a particular class of materials captured the attention of the scientific community for its attractive properties: halide perovskites. Devices with perovskite as light-absorber saw an impressive development within the last decade, reaching nowadays efficiencies comparable to mature photovoltaic technologies like silicon solar cells. Yet, there are still several roadblocks to overcome before a wide-spread commercialization of this kind of devices is enabled. One of the critical points lies at the interfaces: perovskite solar cells (PSCs) are made of several layers with different chemical and physical features. In order for the device to function properly, these properties have to be well-matched. This dissertation deals with some of the challenges related to interfaces in PSCs, with a focus on the interface between the perovskite material itself and the subsequent charge transport layer. In particular, molecular assemblies with specific properties are deposited on the perovskite surface to functionalize it. The functionalization results in energy level alignment adjustment, interfacial losses reduction, and stability improvement. First, a strategy to tune the perovskite's energy levels is introduced: self-assembled monolayers of dipolar molecules are used to functionalize the surface, obtaining simultaneously a shift in the vacuum level position and a saturation of the dangling bonds at the surface. A shift in the vacuum level corresponds to an equal change in work function, ionization energy, and electron affinity. The direction of the shift depends on the direction of the collective interfacial dipole. The magnitude of the shift can be tailored by controlling the deposition parameters, such as the concentration of the solution used for the deposition. The shift for different molecules is characterized by several non-invasive techniques, including in particular Kelvin probe. Overall, it is shown that it is possible to shift the perovskite energy levels in both directions by several hundreds of meV. Moreover, interesting insights on the molecules deposition dynamics are revealed. Secondly, the application of this strategy in perovskite solar cells is explored. Devices with different perovskite compositions ("triple cation perovskite" and MAPbBr3) are prepared. The two resulting model systems present different energetic offsets at the perovskite/hole-transport layer interface. Upon tailored perovskite surface functionalization, the devices show a stabilized open circuit voltage (Voc) enhancement of approximately 60 meV on average for devices with MAPbBr3, while the impact is limited on triple-cation solar cells. This suggests that the proposed energy level tuning method is valid, but its effectiveness depends on factors such as the significance of the energetic offset compared to the other losses in the devices. Finally, the above presented method is further developed by incorporating the ability to interact with the perovskite surface directly into a novel hole-transport material (HTM), named PFI. The HTM can anchor to the perovskite halide ions via halogen bonding (XB). Its behaviour is compared to that of another HTM (PF) with same chemical structure and properties, except for the ability of forming XB. The interaction of perovskite with PFI and PF is characterized through UV-Vis, atomic force microscopy and Kelvin probe measurements combined with simulations. Compared to PF, PFI exhibits enhanced resilience against solvent exposure and improved energy level alignment with the perovskite layer. As a consequence, devices comprising PFI show enhanced Voc and operational stability during maximum-power-point tracking, in addition to hysteresis reduction. XB promotes the formation of a high-quality interface by anchoring to the halide ions and forming a stable and ordered interfacial layer, showing to be a particularly interesting candidate for the development of tailored charge transport materials in PSCs. Overall, the results exposed in this dissertation introduce and discuss a versatile tool to functionalize the perovskite surface and tune its energy levels. The application of this method in devices is explored and insights on its challenges and advantages are given. Within this frame, the results shed light on XB as ideal interaction for enhancing stability and efficiency in perovskite-based devices.}, language = {en} }