@inproceedings{Harrison2010, author = {Harrison, William}, title = {Malleability, obliviousness and aspects for broadcast service attachment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41389}, year = {2010}, abstract = {An important characteristic of Service-Oriented Architectures is that clients do not depend on the service implementation's internal assignment of methods to objects. It is perhaps the most important technical characteristic that differentiates them from more common object-oriented solutions. This characteristic makes clients and services malleable, allowing them to be rearranged at run-time as circumstances change. That improvement in malleability is impaired by requiring clients to direct service requests to particular services. Ideally, the clients are totally oblivious to the service structure, as they are to aspect structure in aspect-oriented software. Removing knowledge of a method implementation's location, whether in object or service, requires re-defining the boundary line between programming language and middleware, making clearer specification of dependence on protocols, and bringing the transaction-like concept of failure scopes into language semantics as well. This paper explores consequences and advantages of a transition from object-request brokering to service-request brokering, including the potential to improve our ability to write more parallel software.}, language = {en} } @inproceedings{SurajbaliGraceCoulson2010, author = {Surajbali, Bholanathsingh and Grace, Paul and Coulson, Geoff}, title = {Preserving dynamic reconfiguration consistency in aspect oriented middleware}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41379}, year = {2010}, abstract = {Aspect-oriented middleware is a promising technology for the realisation of dynamic reconfiguration in heterogeneous distributed systems. However, like other dynamic reconfiguration approaches, AO-middleware-based reconfiguration requires that the consistency of the system is maintained across reconfigurations. AO-middleware-based reconfiguration is an ongoing research topic and several consistency approaches have been proposed. However, most of these approaches tend to be targeted at specific contexts, whereas for distributed systems it is crucial to cover a wide range of operating conditions. In this paper we propose an approach that offers distributed, dynamic reconfiguration in a consistent manner, and features a flexible framework-based consistency management approach to cover a wide range of operating conditions. We evaluate our approach by investigating the configurability and transparency of our approach and also quantify the performance overheads of the associated consistency mechanisms.}, language = {en} }