@phdthesis{Feld2014, author = {Feld, Christian}, title = {Crustal structure of the Eratosthenes Seamount, Cyprus and S. Turkey from an amphibian wide-angle seismic profile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73479}, school = {Universit{\"a}t Potsdam}, pages = {xi, 131}, year = {2014}, abstract = {In March 2010, the project CoCoCo (incipient COntinent-COntinent COllision) recorded a 650 km long amphibian N-S wide-angle seismic profile, extending from the Eratosthenes Seamount (ESM) across Cyprus and southern Turkey to the Anatolian plateau. The aim of the project is to reveal the impact of the transition from subduction to continent-continent collision of the African plate with the Cyprus-Anatolian plate. A visual quality check, frequency analysis and filtering were applied to the seismic data and reveal a good data quality. Subsequent first break picking, finite-differences ray tracing and inversion of the offshore wide-angle data leads to a first-arrival tomographic model. This model reveals (1) P-wave velocities lower than 6.5 km/s in the crust, (2) a variable crustal thickness of about 28 - 37 km and (3) an upper crustal reflection at 5 km depth beneath the ESM. Two land shots on Turkey, also recorded on Cyprus, airgun shots south of Cyprus and geological and previous seismic investigations provide the information to derive a layered velocity model beneath the Anatolian plateau and for the ophiolite complex on Cyprus. The analysis of the reflections provides evidence for a north-dipping plate subducting beneath Cyprus. The main features of this layered velocity model are (1) an upper and lower crust with large lateral changes of the velocity structure and thickness, (2) a Moho depth of about 38 - 45 km beneath the Anatolian plateau, (3) a shallow north-dipping subducting plate below Cyprus with an increasing dip and (4) a typical ophiolite sequence on Cyprus with a total thickness of about 12 km. The offshore-onshore seismic data complete and improve the information about the velocity structure beneath Cyprus and the deeper part of the offshore tomographic model. Thus, the wide-angle seismic data provide detailed insights into the 2-D geometry and velocity structures of the uplifted and overriding Cyprus-Anatolian plate. Subsequent gravity modelling confirms and extends the crustal P-wave velocity model. The deeper part of the subducting plate is constrained by the gravity data and has a dip angle of ~ 28°. Finally, an integrated analysis of the geophysical and geological information allows a comprehensive interpretation of the crustal structure related to the collision process.}, language = {en} } @phdthesis{Dahlke2020, author = {Dahlke, Sandro}, title = {Rapid climate changes in the arctic region of Svalbard}, doi = {10.25932/publishup-44554}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445542}, school = {Universit{\"a}t Potsdam}, pages = {xv, 123}, year = {2020}, abstract = {Over the last decades, the Arctic regions of the earth have warmed at a rate 2-3 times faster than the global average- a phenomenon called Arctic Amplification. A complex, non-linear interplay of physical processes and unique pecularities in the Arctic climate system is responsible for this, but the relative role of individual processes remains to be debated. This thesis focuses on the climate change and related processes on Svalbard, an archipelago in the North Atlantic sector of the Arctic, which is shown to be a "hotspot" for the amplified recent warming during winter. In this highly dynamical region, both oceanic and atmospheric large-scale transports of heat and moisture interfere with spatially inhomogenous surface conditions, and the corresponding energy exchange strongly shapes the atmospheric boundary layer. In the first part, Pan-Svalbard gradients in the surface air temperature (SAT) and sea ice extent (SIE) in the fjords are quantified and characterized. This analysis is based on observational data from meteorological stations, operational sea ice charts, and hydrographic observations from the adjacent ocean, which cover the 1980-2016 period. It is revealed that typical estimates of SIE during late winter range from 40-50\% (80-90\%) in the western (eastern) parts of Svalbard. However, strong SAT warming during winter of the order of 2-3K per decade dictates excessive ice loss, leaving fjords in the western parts essentially ice-free in recent winters. It is further demostrated that warm water currents on the west coast of Svalbard, as well as meridional winds contribute to regional differences in the SIE evolution. In particular, the proximity to warm water masses of the West Spitsbergen Current can explain 20-37\% of SIE variability in fjords on west Svalbard, while meridional winds and associated ice drift may regionally explain 20-50\% of SIE variability in the north and northeast. Strong SAT warming has overruled these impacts in recent years, though. In the next part of the analysis, the contribution of large-scale atmospheric circulation changes to the Svalbard temperature development over the last 20 years is investigated. A study employing kinematic air-back trajectories for Ny-{\AA}lesund reveals a shift in the source regions of lower-troposheric air over time for both the winter and the summer season. In winter, air in the recent decade is more often of lower-latitude Atlantic origin, and less frequent of Arctic origin. This affects heat- and moisture advection towards Svalbard, potentially manipulating clouds and longwave downward radiation in that region. A closer investigation indicates that this shift during winter is associated with a strengthened Ural blocking high and Icelandic low, and contributes about 25\% to the observed winter warming on Svalbard over the last 20 years. Conversely, circulation changes during summer include a strengthened Greenland blocking high which leads to more frequent cold air advection from the central Arctic towards Svalbard, and less frequent air mass origins in the lower latitudes of the North Atlantic. Hence, circulation changes during winter are shown to have an amplifying effect on the recent warming on Svalbard, while summer circulation changes tend to mask warming. An observational case study using upper air soundings from the AWIPEV research station in Ny-{\AA}lesund during May-June 2017 underlines that such circulation changes during summer are associated with tropospheric anomalies in temperature, humidity and boundary layer height. In the last part of the analysis, the regional representativeness of the above described changes around Svalbard for the broader Arctic is investigated. Therefore, the terms in the diagnostic temperature equation in the Arctic-wide lower troposphere are examined for the Era-Interim atmospheric reanalysis product. Significant positive trends in diabatic heating rates, consistent with latent heat transfer to the atmosphere over regions of increasing ice melt, are found for all seasons over the Barents/Kara Seas, and in individual months in the vicinity of Svalbard. The above introduced warm (cold) advection trends during winter (summer) on Svalbard are successfully reproduced. Regarding winter, they are regionally confined to the Barents Sea and Fram Strait, between 70°-80°N, resembling a unique feature in the whole Arctic. Summer cold advection trends are confined to the area between eastern Greenland and Franz Josef Land, enclosing Svalbard.}, language = {en} } @phdthesis{Liebs2014, author = {Liebs, G{\"o}ran}, title = {Ground penetration radar wave velocities and their uncertainties}, doi = {10.25932/publishup-43680}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436807}, school = {Universit{\"a}t Potsdam}, pages = {ii, 106}, year = {2014}, abstract = {We develop three new approaches for ground penetration wave velocity calcultaions. The first is based on linear moveout spectra to find the optimum ground wave velocity including uncertainties from multi-offset data gathers. We used synthetic data to illustrate the principles of the method and to investigate uncertainties in ground wave velocity estimates. To demonstrate the applicability of the approach to real data, we analyzed GPR data sets recorded at field sites in Canada over an annual cycle from Steelman \& Endres [2010]. The results obtained by this efficient and largely automated procedure agree well with the manual achieved results of Steelman \& Endres [2010], derived by a more laborious largely manual analysis strategy. Then we develop a second methodology to global invert reflection traveltimes with a particle swarm optimization approach more precise then conventional spectral NMO-based velocity analysis (e.g., Greaves et al. [1996]). For global optimization, we use particle swarm optimization (PSO; Kennedy \& Eberhart [1995]) in the combination with a fast eikonal solver as forward solver (Sethian [1996]; Fomel [1997a]; Sethian \& Popovici [1999]). This methodology allows us to generate reliability CMP derived models of subsurface velocities and water content including uncertainties. We test this method with synthetic data to study the behavior of the PSO algorithm. Afterward, We use this method to analyze our field data from a well constrained test site in Horstwalde, Germany. The achieved velocity models from field data showed good agreement to borehole logging and direct-push data (Schmelzbach et al. [2011]) at the same site position. For the third method we implement a global optimization approach also based on PSO to invert direct-arrival traveltimes of VRP data to obtain high resolution 1D velocity models including quantitative estimates of uncertainty. Our intensive tests with several traveltime data sets helped to understand the behavior of PSO algorithm for inversion. Integration of the velocity model to VRP reflection imaging and attenuation model improved the potential of VRP surveying. Using field data, we examine this novel analysis strategy for the development of petrophysical models and the linking between GPR borehole and other logging data to surface GPR reflection data.}, language = {de} } @phdthesis{Mulyukova2015, author = {Mulyukova, Elvira}, title = {Stability of the large low shear velocity provinces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82228}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2015}, abstract = {We study segregation of the subducted oceanic crust (OC) at the core mantle boundary and its ability to accumulate and form large thermochemical piles (such as the seismically observed Large Low Shear Velocity Provinces - LLSVPs). Our high-resolution numerical simulations suggest that the longevity of LLSVPs for up to three billion years, and possibly longer, can be ensured by a balance in the rate of segregation of high-density OC-material to the CMB, and the rate of its entrainment away from the CMB by mantle upwellings. For a range of parameters tested in this study, a large-scale compositional anomaly forms at the CMB, similar in shape and size to the LLSVPs. Neutrally buoyant thermochemical piles formed by mechanical stirring - where thermally induced negative density anomaly is balanced by the presence of a fraction of dense anomalous material - best resemble the geometry of LLSVPs. Such neutrally buoyant piles tend to emerge and survive for at least 3Gyr in simulations with quite different parameters. We conclude that for a plausible range of values of density anomaly of OC material in the lower mantle - it is likely that it segregates to the CMB, gets mechanically mixed with the ambient material, and forms neutrally buoyant large scale compositional anomalies similar in shape to the LLSVPs. We have developed an efficient FEM code with dynamically adaptive time and space resolution, and marker-in-cell methodology. This enabled us to model thermochemical mantle convection at realistically high convective vigor, strong thermally induced viscosity variations, and long term evolution of compositional fields.}, language = {en} } @phdthesis{Reiter2014, author = {Reiter, Karsten}, title = {Crustal stress variability across spatial scales - examples from Canada, Northern Switzerland and a South African gold mine}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76762}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 149, XI}, year = {2014}, abstract = {The quantitative descriptions of the state of stress in the Earth's crust, and spatial-temporal stress changes are of great importance in terms of scientific questions as well as applied geotechnical issues. Human activities in the underground (boreholes, tunnels, caverns, reservoir management, etc.) have a large impact on the stress state. It is important to assess, whether these activities may lead to (unpredictable) hazards, such as induced seismicity. Equally important is the understanding of the in situ stress state in the Earth's crust, as it allows the determination of safe well paths, already during well planning. The same goes for the optimal configuration of the injection- and production wells, where stimulation for artificial fluid path ways is necessary. The here presented cumulative dissertation consists of four separate manuscripts, which are already published, submitted or will be submitted for peer review within the next weeks. The main focus is on the investigation of the possible usage of geothermal energy in the province Alberta (Canada). A 3-D geomechanical-numerical model was designed to quantify the contemporary 3-D stress tensor in the upper crust. For the calibration of the regional model, 321 stress orientation data and 2714 stress magnitude data were collected, whereby the size and diversity of the database is unique. A calibration scheme was developed, where the model is calibrated versus the in situ stress data stepwise for each data type and gradually optimized using statistically test methods. The optimum displacement on the model boundaries can be determined by bivariate linear regression, based on only three model runs with varying deformation ratio. The best-fit model is able to predict most of the in situ stress data quite well. Thus, the model can provide the full stress tensor along any chosen virtual well paths. This can be used to optimize the orientation of horizontal wells, which e.g. can be used for reservoir stimulation. The model confirms regional deviations from the average stress orientation trend, such as in the region of the Peace River Arch and the Bow Island Arch. In the context of data compilation for the Alberta stress model, the Canadian database of the World Stress Map (WSM) could be expanded by including 514 new data records. This publication of an update of the Canadian stress map after ~20 years with a specific focus on Alberta shows, that the maximum horizontal stress (SHmax) is oriented southwest to northeast over large areas in Northern America. The SHmax orientation in Alberta is very homogeneous, with an average of about 47°. In order to calculate the average SHmax orientation on a regular grid as well as to estimate the wave-length of stress orientation, an existing algorithm has been improved and is applied to the Canadian data. The newly introduced quasi interquartile range on the circle (QIROC) improves the variance estimation of periodic data, as it is less susceptible to its outliers. Another geomechanical-numerical model was built to estimate the 3D stress tensor in the target area "N{\"o}rdlich L{\"a}gern" in Northern Switzerland. This location, with Opalinus clay as a host rock, is a potential repository site for high-level radioactive waste. The performed modelling aims to investigate the sensitivity of the stress tensor on tectonic shortening, topography, faults and variable rock properties within the Mesozoic sedimentary stack, according to the required stability needed for a suitable radioactive waste disposal site. The majority of the tectonic stresses caused by the far-field shortening from the South are admitted by the competent rock units in the footwall and hanging wall of the argillaceous target horizon, the Upper Malm and Upper Muschelkalk. Thus, the differential stress within the host rock remains relatively low. East-west striking faults release stresses driven by tectonic shortening. The purely gravitational influence by the topography is low; higher SHmax magnitudes below topographical depression and lower values below hills are mainly observed near the surface. A complete calibration of the model is not possible, as no stress magnitude data are available for calibration, yet. The collection of this data will begin in 2015; subsequently they will be used to adjust the geomechanical-numerical model again. The third geomechanical-numerical model investigates the stress variation in an ultra-deep gold mine in South Africa. This reservoir model is spatially one order of magnitude smaller than the previous local model from Northern Switzerland. Here, the primary focus is to investigate the hypothesis that the Mw 1.9 earthquake on 27 December 2007 was induced by stress changes due to the mining process. The Coulomb failure stress change (DeltaCFS) was used to analyse the stress change. It confirmed that the seismic event was induced by static stress transfer due to the mining progress. The rock was brought closer to failure on the derived rupture plane by stress changes of up to 1.5-15MPa, in dependence of the DeltaCFS analysis type. A forward modelling of a generic excavation scheme reveals that with decreasing distance to the dyke the DeltaCFS values increase significantly. Hence, even small changes in the mining progress can have a significant impact on the seismic hazard risk, i.e. the change of the occurrence probability to induce a seismic event of economic concern.}, language = {en} } @phdthesis{Zubaidah2010, author = {Zubaidah, Teti}, title = {Spatio-temporal characteristics of the geomagnetic field over the Lombok Island, the Lesser Sunda Islands region}, series = {Scientific Technical Report}, volume = {STR10}, journal = {Scientific Technical Report}, number = {07}, publisher = {Deutsches GeoForschungsZentrum GFZ}, address = {Potsdam}, doi = {10.2312/GFZ.b103-10079}, school = {Universit{\"a}t Potsdam}, pages = {xv, 117}, year = {2010}, abstract = {The Lombok Island is part of the Lesser Sunda Islands (LSI) region - Indonesia, situated along the Sunda-Banda Arcs transition. It lies between zones characterized by the highest intensity geomagnetic anomalies of this region, remarkable as one of the eight most important features provided on the 1st edition of World Digital Magnetic Anomaly Map. The seismicity of this region during the last years is high, while the geological and tectonic structures of this region are still not known in detail. Some local magnetic surveys have been conducted previously during 2004-2005. However, due to the lower accuracy of the used equipment and a limited number of stations, the qualities of the previous measurements are questionable for more interpretations. Thus a more detailed study to better characterize the geomagnetic anomaly -spatially and temporally- over this region and to deeply explore the related regional geology, tectonic and seismicity is needed. The intriguing geomagnetic anomalies over this island region vis-{\`a}-vis the socio-cultural situations lead to a study with a special aim to contribute to the assessment of the potential of natural hazards (earthquakes) as well as a new natural resource of energy (geothermal potential). This study is intended to discuss several crucial questions, including: i. The real values and the general pattern of magnetic anomalies over the island, as well as their relation to the regional one. ii. Any temporal changes of regional anomalies over the recent time. iii. The relationships between the anomalies and the geology and tectonic of this region, especially new insights that can be gained from the geomagnetic observations. iv. The relationships between the anomalies and the high seismicity of this region, especially some possible links between their variations to the earthquake occurrence. First, all available geomagnetic data of this region and results of the previous measurements are evaluated. The new geomagnetic surveys carried out in 2006 and 2007/2008 are then presented in detail, followed by the general description of data processing and data quality evaluation. The new results show the general pattern of contiguous negative-positive anomalies, revealing an active arc related subduction region. They agree with earlier results obtained by satellite, aeromagnetic, and marine platforms; and provide a much more detailed picture of the strong anomalies on this island. The temporal characteristics of regional anomalies show a decreasing strength of the dipolar structure, where decreasing of the field intensities is faster than the regional secular variations as defined by the global model (the 10th generation of IGRF). However, some exceptions (increasing of anomalies) have to be noted and further analyzed for several locations. Thereafter, simultaneous magnetic anomalies and gravity models are generated and interpreted in detail. Three profiles are investigated, providing new insights into the tectonics and geological evolution of the Lombok Island. Geological structure of this island can be divided as two main parts with different consecutive ages: an old part (from late Oligocene to late Miocene) in the South and a younger one (from Pliocene to Holocene) in the North. A new subduction in the back arc region (the Flores Thrust zone) is considered mature and active, showing a tendency of progressive subduction during 2005-2008. Geothermal potential in the northern part of this island can be mapped in more detail using these geomagnetic regional survey data. The earlier estimates of reservoir depth can be confirmed further to a depth of about 800 m. Evaluation of temporal changes of the anomalies gives some possible explanations related to the evolution of the back arc region, large stress accumulations over the LSI region, a specific electrical characteristic of the crust of the Lombok Island region, and a structural discontinuity over this island. Based on the results, several possible advanced studies involving geomagnetic data and anomaly investigations over the Lombok Island region can be suggested for the future: i. Monitoring the subduction activity of the back arc region (the Flores Thrust zone) and the accumulated stress over the LSI, that could contribute to middle term hazard assessment with a special attention to the earthquake occurrence in this region. Continuous geomagnetic field measurements from a geomagnetic observatory which can be established in the northern part of the Lombok Island and systematic measurements at several repeat stations can be useful in this regards. ii. Investigating the specific electrical characteristic (high conductivity) of the crust, that is probably related to some aquifer layers or metal mineralization. It needs other complementary geophysical methods, such as magnetotelluric (MT) or preferably DC resistivity measurements. iii. Determining the existence of an active structural fault over the Lombok Island, that could be related to long term hazard assessment over the LSI region. This needs an extension of geomagnetic investigations over the neighbouring islands (the Bali Island in the West and the Sumbawa Island in the East; probably also the Sumba and the Flores islands). This seems possible because the regional magnetic lineations might be used to delineate some structural discontinuities, based on the modelling of contrasts in crustal magnetizations.}, language = {en} } @phdthesis{Muldashev2017, author = {Muldashev, Iskander}, title = {Modeling of the great earthquake seismic cycles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398926}, school = {Universit{\"a}t Potsdam}, pages = {xii, 117}, year = {2017}, abstract = {The timing and location of the two largest earthquakes of the 21st century (Sumatra, 2004 and Tohoku 2011, events) greatly surprised the scientific community, indicating that the deformation processes that precede and follow great megathrust earthquakes remain enigmatic. During these phases before and after the earthquake a combination of multi-scale complex processes are acting simultaneously: Stresses built up by long-term tectonic motions are modified by sudden jerky deformations during earthquakes, before being restored by multiple ensuing relaxation processes. This thesis details a cross-scale thermomechanical model developed with the aim of simulating the entire subduction process from earthquake (1 minute) to million years' time scale, excluding only rupture propagation. The model employs elasticity, non-linear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences, and, by using an adaptive time-step algorithm, recreates the deformation process as observed naturally over single and multiple seismic cycles. The model is thoroughly tested by comparing results to those from known high- resolution solutions of generic modeling setups widely used in modeling of rupture propagation. It is demonstrated, that while not modeling rupture propagation explicitly, the modeling procedure correctly recognizes the appearance of instability (earthquake) and correctly simulates the cumulative slip at a fault during great earthquake by means of a quasi-dynamic approximation. A set of 2D models is used to study the effects of non-linear transient rheology on the postseismic processes following great earthquakes. Our models predict that the viscosity in the mantle wedge drops by 3 to 4 orders of magnitude during a great earthquake with magnitude above 9. This drop in viscosity results in spatial scales and timings of the relaxation processes following the earthquakes that are significantly different to previous estimates. These models replicate centuries long seismic cycles exhibited by the greatest earthquakes (like the Great Chile 1960 Earthquake) and are consistent with the major features of postseismic surface displacements recorded after the Great Tohoku Earthquake. The 2D models are also applied to study key factors controlling maximum magnitudes of earthquakes in subduction zones. Even though methods of instrumentally observing earthquakes at subduction zones have rapidly improved in recent decades, the characteristic recurrence interval of giant earthquakes (Mw>8.5) is much larger than the currently available observational record and therefore the necessary conditions for giant earthquakes are not clear. Statistical studies have recognized the importance of the slab shape and its surface roughness, state of the strain of the upper plate and thickness of sediments filling the trenches. In this thesis we attempt to explain these observations and to identify key controlling parameters. We test a set of 2D models representing great earthquake seismic cycles at known subduction zones with various known geometries, megathrust friction coefficients, and convergence rates implemented. We found that low-angle subduction (large effect) and thick sediments in the subduction channel (smaller effect) are the fundamental necessary conditions for generating giant earthquakes, while the change of subduction velocity from 10 to 3.5 cm/yr has a lower effect. Modeling results also suggest that having thick sediments in the subduction channel causes low static friction, resulting in neutral or slightly compressive deformation in the overriding plate for low-angle subduction zones. These modeling results agree well with observations for the largest earthquakes. The model predicts the largest possible earthquakes for subduction zones of given dipping angles. The predicted maximum magnitudes exactly threshold magnitudes of all known giant earthquakes of 20th and 21st centuries. The clear limitation of most of the models developed in the thesis is their 2D nature. Development of 3D models with comparable resolution and complexity will require significant advances in numerical techniques. Nevertheless, we conducted a series of low-resolution 3D models to study the interaction between two large asperities at a subduction interface separated by an aseismic gap of varying width. The novelty of the model is that it considers behavior of the asperities during multiple seismic cycles. As expected, models show that an aseismic gap with a narrow width could not prevent rupture propagation from one asperity to another, and that rupture always crosses the entire model. When the gap becomes too wide, asperities do not interact anymore and rupture independently. However, an interesting mode of interaction was observed in the model with an intermediate width of the aseismic gap: In this model the asperities began to stably rupture in anti-phase following multiple seismic cycles. These 3D modeling results, while insightful, must be considered preliminary because of the limitations in resolution. The technique developed in this thesis for cross-scale modeling of seismic cycles can be used to study the effects of multiple seismic cycles on the long-term deformation of the upper plate. The technique can be also extended to the case of continental transform faults and for the advanced 3D modeling of specific subduction zones. This will require further development of numerical techniques and adaptation of the existing advanced highly scalable parallel codes like LAMEM and ASPECT.}, language = {en} } @phdthesis{Hendriyana2017, author = {Hendriyana, Andri}, title = {Detection and Kirchhoff-type migration of seismic events by use of a new characteristic function}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398879}, school = {Universit{\"a}t Potsdam}, pages = {v, 139}, year = {2017}, abstract = {The classical method of seismic event localization is based on the picking of body wave arrivals, ray tracing and inversion of travel time data. Travel time picks with small uncertainties are required to produce reliable and accurate results with this kind of source localization. Hence recordings, with a low Signal-to-Noise Ratio (SNR) cannot be used in a travel time based inversion. Low SNR can be related with weak signals from distant and/or low magnitude sources as well as with a high level of ambient noise. Diffraction stacking is considered as an alternative seismic event localization method that enables also the processing of low SNR recordings by mean of stacking the amplitudes of seismograms along a travel time function. The location of seismic event and its origin time are determined based on the highest stacked amplitudes (coherency) of the image function. The method promotes an automatic processing since it does not need travel time picks as input data. However, applying diffraction stacking may require longer computation times if only limited computer resources are used. Furthermore, a simple diffraction stacking of recorded amplitudes could possibly fail to locate the seismic sources if the focal mechanism leads to complex radiation patterns which typically holds for both natural and induced seismicity. In my PhD project, I have developed a new work flow for the localization of seismic events which is based on a diffraction stacking approach. A parallelized code was implemented for the calculation of travel time tables and for the determination of an image function to reduce computation time. In order to address the effects from complex source radiation patterns, I also suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original wave form data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. I demonstrate that, the performance of the mAIC does not depend on the chosen length of the analyzed time window and that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P- and S-waves due to inaccurate velocity models, I separate the P- and S-waves from the mAIC function by making use of polarization attributes. Then, eventually the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Before applying diffraction stacking, I also apply seismogram denoising by using Otsu thresholding in the time-frequency domain. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results even from seismograms with low SNR=1. Tests with different presentations of the synthetic seismograms (displacement, velocity, and acceleration) shown that, acceleration seismograms deliver better results in case of high SNR, whereas displacement seismograms provide more accurate results in case of low SNR recordings. In another test, different measures (maximum amplitude, other statistical parameters) were used to determine the source location in the final image function. I found that the statistical approach is the preferred method particularly for low SNR. The work flow of my diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for 9 months around the Tarutung pull-apart Basin were analyzed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung Basin. Two lineaments striking N-S were found in the middle of the Tarutung Basin which support independent results from structural geology. These features are interpreted as opening fractures due to local extension. A cluster of seismic events repeatedly occurred in short time which might be related to fluid drainage since two hot springs are observed at the surface near to this cluster.}, language = {en} } @phdthesis{Kaethner2016, author = {K{\"a}thner, Jana}, title = {Interaction of spatial variability characterized by soil electrical conductivity and plant water status related to generative growth of fruit trees}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397666}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 104, IV}, year = {2016}, abstract = {Precision horticulture beschreibt ein neues Bewirtschaftungskonzept im Gartenbau, bei dem teilfl{\"a}chenspezifisch oder an den Einzelbaum angepasste Maßnahmen eine ressourcenschonende, intensitve Produktion erm{\"o}glichen. Die Datengrundlage wird aus r{\"a}umlich aufgel{\"o}sten Messungen aus der Produktionsanlage gewonnen, wobei sowohl kurzfristige Faktoren wie der effektive Pflanzenwasserzustand als auch langfristige Faktoren wie die Bodenvariabilit{\"a}t zur Informationsgewinnung genutzt werden k{\"o}nnen. Die vorliegende Arbeit umfasst eine Untersuchung der scheinbaren elektrischen Leitf{\"a}higkeit des Bodens (ECa), des Pflanzenwasserzustandes und der Fruchtqualit{\"a}t (zum Beispiel: Fruchtgr{\"o}ße) bei Prunus domestica L. (Pflaume) und Citrus x aurantium, Syn. Citrus paradisi (Grapefruit). Zielsetzungen der vorliegenden Arbeit waren (i) die Charakterisierung der 3D-Verteilung der scheinbaren elektrischen Leitf{\"a}higkeit des Bodens und Variabilit{\"a}t des Pflanzenwasserzustandes; (ii) die Untersuchung der Interaktion zwischen ECa, kumulativer Wassernutzungseffizienz (WUEc) und des crop water stress index (CWSI) bezogen auf die Fruchtqualit{\"a}t sowie (iii) eine M{\"o}glichkeit zur Einteilung von einzelnen B{\"a}umen hinsichtlich der Bew{\"a}sserung. Dazu fanden die Hauptuntersuchungen in der Pflaumenanlage statt. Diese Obstanlage befindet sich in Hanglage (3°) auf pleistoz{\"a}nen und postpleistoz{\"a}nen Substraten in semi-humiden Klima (Potsdam, Deutschland) und umfasst eine Fl{\"a}che von 0,37 ha mit 156 B{\"a}umen der Kultursorte ˈTophit Plusˈ auf der Unterlage Wavit. Die Anlage wurde 2009 mit ein und zwei-j{\"a}hrigen B{\"a}umen in einem Pflanzabstand von 4 m entlang der Bew{\"a}sserung und 5 m zwischen den Reihen angelegt. Dreimal pro Woche wurden die B{\"a}ume mit einer 50 cm {\"u}ber dem Boden installierten Tr{\"o}pfchenbew{\"a}sserung mit 1,6 l pro Baum bew{\"a}ssert. Mit Hilfe geoelektrischer Messungen wurde die scheinbare elektrische Leitf{\"a}higkeit des Oberbodens (0,25 m) mit einem Elektrodenabstand von 0,5 m (4-point light hp) an jedem Baum gemessen. Dadurch wurde die Anlage hinsichtlich ECa r{\"a}umlich charakterisiert. Zus{\"a}tzlich erfolgten Tomographiemessungen zur 3D-Charakterisierung der ECa und punktuell die Beprobung von Bohrlochprofilen bis 1 m Tiefe. Die vegetativen, generativen und Fruchtqualit{\"a}tsdaten wurden an jedem Baum erhoben. Der momentane Pflanzenwasserzustand wurde mit der etablierten Scholander-Methode zur Wasserpotentialanalyse (Scholander Bombe) punktuell und mit Thermalaufnahmen fl{\"a}chendeckend bestimmt. Die Thermalaufnahmen erfolgten mit einer Infrarot-Kamera (ThermaCam SC 500), die auf einem Traktor in 3,3 m H{\"o}he {\"u}ber dem Boden montiert war. Die Thermalaufnahmen (320 x 240 Pixel) der Kronenoberfl{\"a}che wurden mit einem {\"O}ffnungswinkel von 45° und einer geometrischen Aufl{\"o}sung von 6,41 mm x 8,54 mm aufgenommen. Mit Hilfe der Kronentemperatur aus den Thermalbildern und den Temperaturen eines nassen und trockenen Referenzblattes wurde der CWSI berechnet. Es wurde die Anpassung des CWSI f{\"u}r die Messung in semi-humidem Klima erarbeitet, wobei die Erhebung der Referenztemperaturen automatisiert aus den Thermalbildern erfolgte. Die Boniturdaten wurden mit Hilfe eines Varianz-Stabilisierungsverfahrens in eine Normalverteilung transformiert. Die statistischen Analysen sowie die automatisierte Auswertungsroutine erfolgten mit eigenen Skripten in MATLAB® (R2010b sowie R2016a) und einem freien Programm (spatialtoolbox). Die Hot-spot Analysen dienten der Pr{\"u}fung, ob ein beobachtetes Muster statistisch signifikant ist. Evaluiert wurde die Methode mit der etablierten k-mean Analyse. Zum Testen der Hot-spot Analyse wurden ECa, Stammumfang und Ertrag Daten aus einer Grapefruitanlage (Adana, T{\"u}rkei) mit 179 B{\"a}umen auf einem Boden vom Typ Xerofkuvent mit toniger und tonig-lehmiger Textur herangezogen. Die {\"U}berpr{\"u}fung der Interaktion zwischen den kritischen Werten aus den Boden- und Pflanzenwasserzustandsinformationen zu den vegetativen und generativen Pflanzenwachtumsvariablen erfolgte durch die Anwendung der ANOVA und die Ermittlung des Korrelationskoeffizienten. In der Arbeit konnte gezeigt werden, dass die Variabilit{\"a}t der Boden- und Pflanzeninformationen in Obstanlagen auch kleinr{\"a}umig hoch ist. Es konnte gezeigt werden, dass die r{\"a}umlich gefundenen Muster in den ECa {\"u}ber die Jahre zwischen 2011-2012 (r = 0.88) beziehungsweise 2012-2013 (r = 0.71) stabil geblieben sind. Zum anderen wurde gezeigt, dass eine CWSI-Bestimmung auch im semi-humiden Klima m{\"o}glich ist. Es wurde ein Zusammenhang (r = - 0.65, p < 0.0001) mit der etablierten Methode der Blattwasser-potentialanalyse ermittelt. Die Interaktion zwischen der ECa aus verschiedenen Tiefen und den Pflanzenvariablen ergab einen hoch signifikanten Zusammenhang mit dem Oberboden, in dem das Bew{\"a}sserungswasser zu finden war. Es wurde eine Korrelation zwischen Ertrag und ECatopsoil von r = 0.52 ermittelt. Durch die Anwendung der Hot-spot Analyse konnten Extremwerte in den r{\"a}umlichen Daten ermittelt werden. Diese Extrema dienten zur Einteilung der Zonen in cold-spot, random und hot-spot. Die random Zone weist die h{\"o}chsten Korrelationen zu den Pflanzenvariablen auf. Ferner konnte gezeigt werden, dass bereits im semi-humiden Klima der Pflanzenwasserstatus entscheidend zur Fruchtqualit{\"a}t beitr{\"a}gt. Zusammenfassend l{\"a}sst sich sagen, dass die r{\"a}umliche Variabilit{\"a}t der Fruchtqualit{\"a}t durch die Interaktion von Wassernutzungseffizienz und CWSI sowie in geringerem Maße durch den ECa des Bodens. In der Pflaumenanlage im semi-humiden Klima war die Bew{\"a}sserung ausschlaggebend f{\"u}r die Produktion von qualitativ hochwertigen Fr{\"u}chten.}, language = {en} } @phdthesis{Davis2021, author = {Davis, Timothy}, title = {An analytical and numerical analysis of fluid-filled crack propagation in three dimensions}, doi = {10.25932/publishup-50960}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509609}, school = {Universit{\"a}t Potsdam}, pages = {xi, 187}, year = {2021}, abstract = {Fluids in the Earth's crust can move by creating and flowing through fractures, in a process called `hydraulic fracturing'. The tip-line of such fluid-filled fractures grows at locations where stress is larger than the strength of the rock. Where the tip stress vanishes, the fracture closes and the fluid-front retreats. If stress gradients exist on the fracture's walls, induced by fluid/rock density contrasts or topographic stresses, this results in an asymmetric shape and growth of the fracture, allowing for the contained batch of fluid to propagate through the crust. The state-of-the-art analytical and numerical methods to simulate fluid-filled fracture propagation are two-dimensional (2D). In this work I extend these to three dimensions (3D). In my analytical method, I approximate the propagating 3D fracture as a penny-shaped crack that is influenced by both an internal pressure and stress gradients. In addition, I develop a numerical method to model propagation where curved fractures can be simulated as a mesh of triangular dislocations, with the displacement of faces computed using the displacement discontinuity method. I devise a rapid technique to approximate stress intensity and use this to calculate the advance of the tip-line. My 3D models can be applied to arbitrary stresses, topographic and crack shapes, whilst retaining short computation times. I cross-validate my analytical and numerical methods and apply them to various natural and man-made settings, to gain additional insights into the movements of hydraulic fractures such as magmatic dikes and fluid injections in rock. In particular, I calculate the `volumetric tipping point', which once exceeded allows a fluid-filled fracture to propagate in a `self-sustaining' manner. I discuss implications this has for hydro-fracturing in industrial operations. I also present two studies combining physical models that define fluid-filled fracture trajectories and Bayesian statistical techniques. In these studies I show that the stress history of the volcanic edifice defines the location of eruptive vents at volcanoes. Retrieval of the ratio between topographic to remote stresses allows for forecasting of probable future vent locations. Finally, I address the mechanics of 3D propagating dykes and sills in volcanic regions. I focus on Sierra Negra volcano in the Gal\'apagos islands, where in 2018, a large sill propagated with an extremely curved trajectory. Using a 3D analysis, I find that shallow horizontal intrusions are highly sensitive to topographic and buoyancy stress gradients, as well as the effects of the free surface.}, language = {en} } @phdthesis{Nikkhoo2019, author = {Nikkhoo, Mehdi}, title = {Analytical and numerical elastic dislocation models of volcano deformation processes}, doi = {10.25932/publishup-42972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429720}, school = {Universit{\"a}t Potsdam}, pages = {x, 175}, year = {2019}, abstract = {The advances in modern geodetic techniques such as the global navigation satellite system (GNSS) and synthetic aperture radar (SAR) provide surface deformation measurements with an unprecedented accuracy and temporal and spatial resolutions even at most remote volcanoes on Earth. Modelling of the high-quality geodetic data is crucial for understanding the underlying physics of volcano deformation processes. Among various approaches, mathematical models are the most effective for establishing a quantitative link between the surface displacements and the shape and strength of deformation sources. Advancing the geodetic data analyses and hence, the knowledge on the Earth's interior processes, demands sophisticated and efficient deformation modelling approaches. Yet the majority of these models rely on simplistic assumptions for deformation source geometries and ignore complexities such as the Earth's surface topography and interactions between multiple sources. This thesis addresses this problem in the context of analytical and numerical volcano deformation modelling. In the first part, new analytical solutions for triangular dislocations (TDs) in uniform infinite and semi-infinite elastic media have been developed. Through a comprehensive investigation, the locations and causes of artefact singularities and numerical instabilities associated with TDs have been determined and these long-standing drawbacks have been addressed thoroughly. This approach has then been extended to rectangular dislocations (RDs) with full rotational degrees of freedom. Using this solution in a configuration of three orthogonal RDs a compound dislocation model (CDM) has been developed. The CDM can represent generalized volumetric and planar deformation sources efficiently. Thus, the CDM is relevant for rapid inversions in early warning systems and can also be used for detailed deformation analyses. In order to account for complex source geometries and realistic topography in the deformation models, in this thesis the boundary element method (BEM) has been applied to the new solutions for TDs. In this scheme, complex surfaces are simulated as a continuous mesh of TDs that may possess any displacement or stress boundary conditions in the BEM calculations. In the second part of this thesis, the developed modelling techniques have been applied to five different real-world deformation scenarios. As the first and second case studies the deformation sources associated with the 2015 Calbuco eruption and 2013-2016 Copahue inflation period have been constrained by using the CDM. The highly anisotropic source geometries in these two cases highlight the importance of using generalized deformation models such as the CDM, for geodetic data inversions. The other three case studies in this thesis involve high-resolution dislocation models and BEM calculations. As the third case, the 2013 pre-explosive inflation of Volc{\´a}n de Colima has been simulated by using two ellipsoidal cavities, which locate zones of pressurization in the volcano's lava dome. The fourth case study, which serves as an example for volcanotectonics interactions, the 3-D kinematics of an active ring-fault at Tend{\"u}rek volcano has been investigated through modelling displacement time series over the 2003-2010 time period. As the fifth example, the deformation sources associated with North Korea's underground nuclear test in September 2017 have been constrained. These examples demonstrate the advancement and increasing level of complexity and the general applicability of the developed dislocation modelling techniques. This thesis establishes a unified framework for rapid and high-resolution dislocation modelling, which in addition to volcano deformations can also be applied to tectonic and humanmade deformations.}, language = {en} } @phdthesis{AlHalbouni2019, author = {Al-Halbouni, Djamil}, title = {Photogrammetry and distinct element geomechanical modelling of sinkholes and large-scale karstic depressions}, doi = {10.25932/publishup-43215}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432159}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2019}, abstract = {Sinkholes and depressions are typical landforms of karst regions. They pose a considerable natural hazard to infrastructure, agriculture, economy and human life in affected areas worldwide. The physio-chemical processes of sinkholes and depression formation are manifold, ranging from dissolution and material erosion in the subsurface to mechanical subsidence/failure of the overburden. This thesis addresses the mechanisms leading to the development of sinkholes and depressions by using complementary methods: remote sensing, distinct element modelling and near-surface geophysics. In the first part, detailed information about the (hydro)-geological background, ground structures, morphologies and spatio-temporal development of sinkholes and depressions at a very active karst area at the Dead Sea are derived from satellite image analysis, photogrammetry and geologic field surveys. There, clusters of an increasing number of sinkholes have been developing since the 1980s within large-scale depressions and are distributed over different kinds of surface materials: clayey mud, sandy-gravel alluvium and lacustrine evaporites (salt). The morphology of sinkholes differs depending in which material they form: Sinkholes in sandy-gravel alluvium and salt are generally deeper and narrower than sinkholes in the interbedded evaporite and mud deposits. From repeated aerial surveys, collapse precursory features like small-scale subsidence, individual holes and cracks are identified in all materials. The analysis sheds light on the ongoing hazardous subsidence process, which is driven by the base-level fall of the Dead Sea and by the dynamic formation of subsurface water channels. In the second part of this thesis, a novel, 2D distinct element geomechanical modelling approach with the software PFC2D-V5 to simulating individual and multiple cavity growth and sinkhole and large-scale depression development is presented. The approach involves a stepwise material removal technique in void spaces of arbitrarily shaped geometries and is benchmarked by analytical and boundary element method solutions for circular cavities. Simulated compression and tension tests are used to calibrate model parameters with bulk rock properties for the materials of the field site. The simulations show that cavity and sinkhole evolution is controlled by material strength of both overburden and cavity host material, the depth and relative speed of the cavity growth and the developed stress pattern in the subsurface. Major findings are: (1) A progressively deepening differential subrosion with variable growth speed yields a more fragmented stress pattern with stress interaction between the cavities. It favours multiple sinkhole collapses and nesting within large-scale depressions. (2) Low-strength materials do not support large cavities in the material removal zone, and subsidence is mainly characterised by gradual sagging into the material removal zone with synclinal bending. (3) High-strength materials support large cavity formation, leading to sinkhole formation by sudden collapse of the overburden. (4) Large-scale depression formation happens either by coalescence of collapsing holes, block-wise brittle failure, or gradual sagging and lateral widening. The distinct element based approach is compared to results from remote sensing and geophysics at the field site. The numerical simulation outcomes are generally in good agreement with derived morphometrics, documented surface and subsurface structures as well as seismic velocities. Complementary findings on the subrosion process are provided from electric and seismic measurements in the area. Based on the novel combination of methods in this thesis, a generic model of karst landform evolution with focus on sinkhole and depression formation is developed. A deepening subrosion system related to preferential flow paths evolves and creates void spaces and subsurface conduits. This subsequently leads to hazardous subsidence, and the formation of sinkholes within large-scale depressions. Finally, a monitoring system for shallow natural hazard phenomena consisting of geodetic and geophysical observations is proposed for similarly affected areas.}, language = {en} } @masterthesis{Seyberth2015, type = {Bachelor Thesis}, author = {Seyberth, Karl}, title = {Test einer neuen Methode zur Synthetisierung hydrathaltiger Sedimentproben und Charakterisierung des Hydrathabitus anhand seismischer Messungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81247}, school = {Universit{\"a}t Potsdam}, pages = {II, 41}, year = {2015}, abstract = {Methanhydrate sind besonders in Verbindung mit den steigenden Weltmarktpreisen f{\"u}r {\"O}l und Gas in den vergangenen Jahren mehr und mehr in den Fokus der Energiewirtschaft geraten, was zu einer starken Zunahme der angewandten Forschungsprojekte auf diesem Gebiet f{\"u}hrte. Da Methanhydrat nur unter hohem Druck und niedrigen Temperaturen stabil ist, ist die Gewinnung nat{\"u}rlicher Proben f{\"u}r Laboruntersuchungen technisch sehr aufwendig und vor allem teuer. Zur Charakterisierung der Eigenschaften hydratf{\"u}hrender Reservoire ist man h{\"a}ufig auf die Herstellung synthetischer Proben angewiesen. Die Eigenschaften der synthetisierten Proben sind dabei abh{\"a}ngig von der Herstellungsmethode und man ist noch immer auf der Suche nach Verfahren, mit denen sich m{\"o}glichst „naturnahe" Proben mit vertretbarem Aufwand erzeugen lassen. In der vorliegenden Arbeit wurde eine neue, relativ schnell durchf{\"u}hrbare Methode getestet, die im Porenraum von Sedimenten schwimmende bzw. gef{\"u}gest{\"u}tzende Hydrate bildet, wie sie in der Natur vorkommen. Gleichzeitig erzeugt sie eine gleichm{\"a}ßige Verteilung des Hydrats {\"u}ber die Probe und bietet gute Kontrolle {\"u}ber den Hydratgehalt. Sie funktioniert wie folgt: Eine mit einer KCl-L{\"o}sung ges{\"a}ttigte Sedimentprobe wird zu einem bestimmten Teil ausgefroren und das {\"u}brige Wasser mit Methan verdr{\"a}ngt. Durch Anlegen eines Methandrucks im Stabilit{\"a}tsbereich wird das Eis zu Methanhydrat umgesetzt. Im Anschluss wird die Probe erneut mit einer KCl-L{\"o}sung ges{\"a}ttigt. Anhand seismischer Messungen konnte best{\"a}tigt werden, dass Hydrat mit dem gew{\"u}nschten Hydrathabitus erzeugt wurde. Des Weiteren wurde gezeigt, dass die eishaltigen Proben aufgrund {\"a}hnlicher physikalischer Eigenschaften bereits vor der Umsetzung des Eises zu Methanhydrat als N{\"a}herung f{\"u}r Proben mit Porenraumhydrat verwendet werden k{\"o}nnen.}, language = {de} } @phdthesis{Brugger2021, author = {Brugger, Julia}, title = {Modeling changes in climate during past mass extinctions}, doi = {10.25932/publishup-53246}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532468}, school = {Universit{\"a}t Potsdam}, pages = {V, 217}, year = {2021}, abstract = {The evolution of life on Earth has been driven by disturbances of different types and magnitudes over the 4.6 million years of Earth's history (Raup, 1994, Alroy, 2008). One example for such disturbances are mass extinctions which are characterized by an exceptional increase in the extinction rate affecting a great number of taxa in a short interval of geologic time (Sepkoski, 1986). During the 541 million years of the Phanerozoic, life on Earth suffered five exceptionally severe mass extinctions named the "Big Five Extinctions". Many mass extinctions are linked to changes in climate (Feulner, 2009). Hence, the study of past mass extinctions is not only intriguing, but can also provide insights into the complex nature of the Earth system. This thesis aims at deepening our understanding of the triggers of mass extinctions and how they affected life. To accomplish this, I investigate changes in climate during two of the Big Five extinctions using a coupled climate model. During the Devonian (419.2-358.9 million years ago) the first vascular plants and vertebrates evolved on land while extinction events occurred in the ocean (Algeo et al., 1995). The causes of these formative changes, their interactions and their links to changes in climate are still poorly understood. Therefore, we explore the sensitivity of the Devonian climate to various boundary conditions using an intermediate-complexity climate model (Brugger et al., 2019). In contrast to Le Hir et al. (2011), we find only a minor biogeophysical effect of changes in vegetation cover due to unrealistically high soil albedo values used in the earlier study. In addition, our results cannot support the strong influence of orbital parameters on the Devonian climate, as simulated with a climate model with a strongly simplified ocean model (De Vleeschouwer et al., 2013, 2014, 2017). We can only reproduce the changes in Devonian climate suggested by proxy data by decreasing atmospheric CO2. Still, finding agreement between the evolution of sea surface temperatures reconstructed from proxy data (Joachimski et al., 2009) and our simulations remains challenging and suggests a lower δ18O ratio of Devonian seawater. Furthermore, our study of the sensitivity of the Devonian climate reveals a prevailing mode of climate variability on a timescale of decades to centuries. The quasi-periodic ocean temperature fluctuations are linked to a physical mechanism of changing sea-ice cover, ocean convection and overturning in high northern latitudes. In the second study of this thesis (Dahl et al., under review) a new reconstruction of atmospheric CO2 for the Devonian, which is based on CO2-sensitive carbon isotope fractionation in the earliest vascular plant fossils, suggests a much earlier drop of atmo- spheric CO2 concentration than previously reconstructed, followed by nearly constant CO2 concentrations during the Middle and Late Devonian. Our simulations for the Early Devonian with identical boundary conditions as in our Devonian sensitivity study (Brugger et al., 2019), but with a low atmospheric CO2 concentration of 500 ppm, show no direct conflict with available proxy and paleobotanical data and confirm that under the simulated climatic conditions carbon isotope fractionation represents a robust proxy for atmospheric CO2. To explain the earlier CO2 drop we suggest that early forms of vascular land plants have already strongly influenced weathering. This new perspective on the Devonian questions previous ideas about the climatic conditions and earlier explanations for the Devonian mass extinctions. The second mass extinction investigated in this thesis is the end-Cretaceous mass extinction (66 million years ago) which differs from the Devonian mass extinctions in terms of the processes involved and the timescale on which the extinctions occurred. In the two studies presented here (Brugger et al., 2017, 2021), we model the climatic effects of the Chicxulub impact, one of the proposed causes of the end-Cretaceous extinction, for the first millennium after the impact. The light-dimming effect of stratospheric sulfate aerosols causes severe cooling, with a decrease of global annual mean surface air temperature of at least 26◦C and a recovery to pre-impact temperatures after more than 30 years. The sudden surface cooling of the ocean induces deep convection which brings nutrients from the deep ocean via upwelling to the surface ocean. Using an ocean biogeochemistry model we explore the combined effect of ocean mixing and iron-rich dust originating from the impactor on the marine biosphere. As soon as light levels have recovered, we find a short, but prominent peak in marine net primary productivity. This newly discovered mechanism could result in toxic effects for marine near-surface ecosystems. Comparison of our model results to proxy data (Vellekoop et al., 2014, 2016, Hull et al., 2020) suggests that carbon release from the terrestrial biosphere is required in addition to the carbon dioxide which can be attributed to the target material. Surface ocean acidification caused by the addition of carbon dioxide and sulfur is only moderate. Taken together, the results indicate a significant contribution of the Chicxulub impact to the end-Cretaceous mass extinction by triggering multiple stressors for the Earth system. Although the sixth extinction we face today is characterized by human intervention in nature, this thesis shows that we can gain many insights into future extinctions from studying past mass extinctions, such as the importance of the rate of change (Rothman, 2017), the interplay of multiple stressors (Gunderson et al., 2016), and changes in the carbon cycle (Rothman, 2017, Tierney et al., 2020).}, language = {en} } @phdthesis{Neuharth2022, author = {Neuharth, Derek}, title = {Evolution of divergent and strike-slip boundaries in response to surface processes}, doi = {10.25932/publishup-54940}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549403}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 108}, year = {2022}, abstract = {Plate tectonics describes the movement of rigid plates at the surface of the Earth as well as their complex deformation at three types of plate boundaries: 1) divergent boundaries such as rift zones and mid-ocean ridges, 2) strike-slip boundaries where plates grind past each other, such as the San Andreas Fault, and 3) convergent boundaries that form large mountain ranges like the Andes. The generally narrow deformation zones that bound the plates exhibit complex strain patterns that evolve through time. During this evolution, plate boundary deformation is driven by tectonic forces arising from Earth's deep interior and from within the lithosphere, but also by surface processes, which erode topographic highs and deposit the resulting sediment into regions of low elevation. Through the combination of these factors, the surface of the Earth evolves in a highly dynamic way with several feedback mechanisms. At divergent boundaries, for example, tensional stresses thin the lithosphere, forcing uplift and subsequent erosion of rift flanks, which creates a sediment source. Meanwhile, the rift center subsides and becomes a topographic low where sediments accumulate. This mass transfer from foot- to hanging wall plays an important role during rifting, as it prolongs the activity of individual normal faults. When rifting continues, continents are eventually split apart, exhuming Earth's mantle and creating new oceanic crust. Because of the complex interplay between deep tectonic forces that shape plate boundaries and mass redistribution at the Earth's surface, it is vital to understand feedbacks between the two domains and how they shape our planet. In this study I aim to provide insight on two primary questions: 1) How do divergent and strike-slip plate boundaries evolve? 2) How is this evolution, on a large temporal scale and a smaller structural scale, affected by the alteration of the surface through erosion and deposition? This is done in three chapters that examine the evolution of divergent and strike-slip plate boundaries using numerical models. Chapter 2 takes a detailed look at the evolution of rift systems using two-dimensional models. Specifically, I extract faults from a range of rift models and correlate them through time to examine how fault networks evolve in space and time. By implementing a two-way coupling between the geodynamic code ASPECT and landscape evolution code FastScape, I investigate how the fault network and rift evolution are influenced by the system's erosional efficiency, which represents many factors like lithology or climate. In Chapter 3, I examine rift evolution from a three-dimensional perspective. In this chapter I study linkage modes for offset rifts to determine when fast-rotating plate-boundary structures known as continental microplates form. Chapter 4 uses the two-way numerical coupling between tectonics and landscape evolution to investigate how a strike-slip boundary responds to large sediment loads, and whether this is sufficient to form an entirely new type of flexural strike-slip basin.}, language = {en} } @phdthesis{Niemz2022, author = {Niemz, Peter}, title = {Imaging and modeling of hydraulic fractures in crystalline rock via induced seismic activity}, doi = {10.25932/publishup-55659}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-556593}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2022}, abstract = {Enhanced geothermal systems (EGS) are considered a cornerstone of future sustainable energy production. In such systems, high-pressure fluid injections break the rock to provide pathways for water to circulate in and heat up. This approach inherently induces small seismic events that, in rare cases, are felt or can even cause damage. Controlling and reducing the seismic impact of EGS is crucial for a broader public acceptance. To evaluate the applicability of hydraulic fracturing (HF) in EGS and to improve the understanding of fracturing processes and the hydromechanical relation to induced seismicity, six in-situ, meter-scale HF experiments with different injection schemes were performed under controlled conditions in crystalline rock in a depth of 410 m at the {\"A}sp{\"o} Hard Rock Laboratory (Sweden). I developed a semi-automated, full-waveform-based detection, classification, and location workflow to extract and characterize the acoustic emission (AE) activity from the continuous recordings of 11 piezoelectric AE sensors. Based on the resulting catalog of 20,000 AEs, with rupture sizes of cm to dm, I mapped and characterized the fracture growth in great detail. The injection using a novel cyclic injection scheme (HF3) had a lower seismic impact than the conventional injections. HF3 induced fewer AEs with a reduced maximum magnitude and significantly larger b-values, implying a decreased number of large events relative to the number of small ones. Furthermore, HF3 showed an increased fracture complexity with multiple fractures or a fracture network. In contrast, the conventional injections developed single, planar fracture zones (Publication 1). An independent, complementary approach based on a comparison of modeled and observed tilt exploits transient long-period signals recorded at the horizontal components of two broad-band seismometers a few tens of meters apart from the injections. It validated the efficient creation of hydraulic fractures and verified the AE-based fracture geometries. The innovative joint analysis of AEs and tilt signals revealed different phases of the fracturing process, including the (re-)opening, growth, and aftergrowth of fractures, and provided evidence for the reactivation of a preexisting fault in one of the experiments (Publication 2). A newly developed network-based waveform-similarity analysis applied to the massive AE activity supports the latter finding. To validate whether the reduction of the seismic impact as observed for the cyclic injection schemes during the {\"A}sp{\"o} mine-scale experiments is transferable to other scales, I additionally calculated energy budgets for injection experiments from previously conducted laboratory tests and from a field application. Across all three scales, the cyclic injections reduce the seismic impact, as depicted by smaller maximum magnitudes, larger b-values, and decreased injection efficiencies (Publication 3).}, language = {en} } @phdthesis{Petersen2021, author = {Petersen, Gesa Maria}, title = {Source studies of small earthquakes in the AlpArray: CMT inversion, seismo-tectonic analysis and methodological developments}, doi = {10.25932/publishup-52563}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525635}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2021}, abstract = {Centroid moment tensor inversion can provide insight into ongoing tectonic processes and active faults. In the Alpine mountains (central Europe), challenges result from low signal-to-noise ratios of earthquakes with small to moderate magnitudes and complex wave propagation effects through the heterogeneous crustal structure of the mountain belt. In this thesis, I make use of the temporary installation of the dense AlpArray seismic network (AASN) to establish a work flow to study seismic source processes and enhance the knowledge of the Alpine seismicity. The cumulative thesis comprises four publications on the topics of large seismic networks, seismic source processes in the Alps, their link to tectonics and stress field, and the inclusion of small magnitude earthquakes into studies of active faults. Dealing with hundreds of stations of the dense AASN requires the automated assessment of data and metadata quality. I developed the open source toolbox AutoStatsQ to perform an automated data quality control. Its first application to the AlpArray seismic network has revealed significant errors of amplitude gains and sensor orientations. A second application of the orientation test to the Turkish KOERI network, based on Rayleigh wave polarization, further illustrated the potential in comparison to a P wave polarization method. Taking advantage of the gain and orientation results of the AASN, I tested different inversion settings and input data types to approach the specific challenges of centroid moment tensor (CMT) inversions in the Alps. A comparative study was carried out to define the best fitting procedures. The application to 4 years of seismicity in the Alps (2016-2019) substantially enhanced the amount of moment tensor solutions in the region. We provide a list of moment tensors solutions down to magnitude Mw 3.1. Spatial patterns of typical focal mechanisms were analyzed in the seismotectonic context, by comparing them to long-term seismicity, historical earthquakes and observations of strain rates. Additionally, we use our MT solutions to investigate stress regimes and orientations along the Alpine chain. Finally, I addressed the challenge of including smaller magnitude events into the study of active faults and source processes. The open-source toolbox Clusty was developed for the clustering of earthquakes based on waveforms recorded across a network of seismic stations. The similarity of waveforms reflects both, the location and the similarity of source mechanisms. Therefore the clustering bears the opportunity to identify earthquakes of similar faulting styles, even when centroid moment tensor inversion is not possible due to low signal-to-noise ratios of surface waves or oversimplified velocity models. The toolbox is described through an application to the Zakynthos 2018 aftershock sequence and I subsequently discuss its potential application to weak earthquakes (Mw<3.1) in the Alps.}, language = {en} } @phdthesis{GaeteRojas2020, author = {Gaete Rojas, Ayleen Barbara}, title = {Monitoring and modeling observations of plumbing systems at caldera-like topography}, doi = {10.25932/publishup-44613}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446135}, school = {Universit{\"a}t Potsdam}, pages = {ix, 96}, year = {2020}, abstract = {In this dissertation, I describe the mechanisms involved in magmatic plumbing system establishment and evolution. Magmatic plumbing systems play a key role in determining volcanic activity style and recognizing its complexities can help in forecasting eruptions, especially within hazardous volcanic systems such as calderas. I explore the mechanisms of dike emplacement and intrusion geometry that shape magmatic plumbing systems beneath caldera-like topographies and how their characteristics relate to precursory activity of a volcanic eruption. For this purpose, I use scaled laboratory models to study the effect of stress field reorientation on a propagating dike induced by caldera topography. I construct these models by using solid gelatin to mimic the elastic properties of the earth's crust with a caldera on the surface. I inject water as the magma analog and track the evolution of the experiments through qualitative (geometry and stress evolution) and quantitative (displacement and strain computation) descriptions. The results show that a vertical dike deviates towards and outside of the caldera-like margin due to stress field reorientation beneath the caldera-like topography. The propagating intrusion forms a circumferential-eruptive dike when the caldera-like size is small, whereas a cone sheet develops beneath the large caldera-like topography. To corroborate the results obtained from the experimental models, this thesis also describes the results of a case study utilizing seismic monitoring data associated with the unrest period of the 2015 phreatic eruption of Lascar volcano. Lascar has a crater with a small-scale caldera-like topography and exhibited long-lasting anomalous evolution of the number of long-period (LP) events preceding the 2015 eruption. I apply seismic techniques to constrain the hypocentral locations of LP events and characterize their spatial distribution, obtaining an image of Lascar's plumbing system. I observe an agreement in shallow hypocentral locations obtained through four different seismic techniques; nevertheless, the cross-correlation technique provides the best results. These results depict a plumbing system with a narrow sub-vertical deep conduit and a shallow hydrothermal system, where most LP events are located. These two regions are connected through an intermediate region of path divergence, whose geometry and orientation likely is influenced by stress reorientation due to topographic effects of the caldera-like crater. Finally, in order to further enhance the interpretations of the previous case study, the seismic data was analyzed in tandem with a complementary multiparametric monitoring dataset. This complementary study confirms that the anomalous LP activity occurred as a sign of unrest in the preparatory phase of the phreatic eruption. In addition, I show how changes observed in other monitored parameters enabled to detect further signs of unrest in the shallow hydrothermal system. Overall, this study demonstrates that detecting complex geometric regions within plumbing systems beneath volcanoes is fundamental to produce an effective forecast of eruptions that from a first view seem to occur without any precursory activity. Furthermore, through the development of this research I show that combining methods that include both observations and models allows one to obtain a more precise interpretation of the volcanic processes.}, language = {en} } @phdthesis{BayonaViveros2021, author = {Bayona Viveros, Jose}, title = {Constructing global stationary seismicity models from the long-term balance of interseismic strain measurements and earthquake-catalog data}, doi = {10.25932/publishup-50927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509270}, school = {Universit{\"a}t Potsdam}, pages = {ix, 83}, year = {2021}, abstract = {One third of the world's population lives in areas where earthquakes causing at least slight damage are frequently expected. Thus, the development and testing of global seismicity models is essential to improving seismic hazard estimates and earthquake-preparedness protocols for effective disaster-risk mitigation. Currently, the availability and quality of geodetic data along plate-boundary regions provides the opportunity to construct global models of plate motion and strain rate, which can be translated into global maps of forecasted seismicity. Moreover, the broad coverage of existing earthquake catalogs facilitates in present-day the calibration and testing of global seismicity models. As a result, modern global seismicity models can integrate two independent factors necessary for physics-based, long-term earthquake forecasting, namely interseismic crustal strain accumulation and sudden lithospheric stress release. In this dissertation, I present the construction of and testing results for two global ensemble seismicity models, aimed at providing mean rates of shallow (0-70 km) earthquake activity for seismic hazard assessment. These models depend on the Subduction Megathrust Earthquake Rate Forecast (SMERF2), a stationary seismicity approach for subduction zones, based on the conservation of moment principle and the use of regional "geodesy-to-seismicity" parameters, such as corner magnitudes, seismogenic thicknesses and subduction dip angles. Specifically, this interface-earthquake model combines geodetic strain rates with instrumentally-recorded seismicity to compute long-term rates of seismic and geodetic moment. Based on this, I derive analytical solutions for seismic coupling and earthquake activity, which provide this earthquake model with the initial abilities to properly forecast interface seismicity. Then, I integrate SMERF2 interface-seismicity estimates with earthquake computations in non-subduction zones provided by the Seismic Hazard Inferred From Tectonics based on the second iteration of the Global Strain Rate Map seismicity approach to construct the global Tectonic Earthquake Activity Model (TEAM). Thus, TEAM is designed to reduce number, and potentially spatial, earthquake inconsistencies of its predecessor tectonic earthquake model during the 2015-2017 period. Also, I combine this new geodetic-based earthquake approach with a global smoothed-seismicity model to create the World Hybrid Earthquake Estimates based on Likelihood scores (WHEEL) model. This updated hybrid model serves as an alternative earthquake-rate approach to the Global Earthquake Activity Rate model for forecasting long-term rates of shallow seismicity everywhere on Earth. Global seismicity models provide scientific hypotheses about when and where earthquakes may occur, and how big they might be. Nonetheless, the veracity of these hypotheses can only be either confirmed or rejected after prospective forecast evaluation. Therefore, I finally test the consistency and relative performance of these global seismicity models with independent observations recorded during the 2014-2019 pseudo-prospective evaluation period. As a result, hybrid earthquake models based on both geodesy and seismicity are the most informative seismicity models during the testing time frame, as they obtain higher information scores than their constituent model components. These results support the combination of interseismic strain measurements with earthquake-catalog data for improved seismicity modeling. However, further prospective evaluations are required to more accurately describe the capacities of these global ensemble seismicity models to forecast longer-term earthquake activity.}, language = {en} } @phdthesis{Zeitz2022, author = {Zeitz, Maria}, title = {Modeling the future resilience of the Greenland Ice Sheet}, doi = {10.25932/publishup-56883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568839}, school = {Universit{\"a}t Potsdam}, pages = {x, 189}, year = {2022}, abstract = {The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming - from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates - a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58\% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen's flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios - while still staying within the limits of the Paris Agreement - include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term.}, language = {en} } @misc{Paetzel2023, type = {Master Thesis}, author = {P{\"a}tzel, Jonas}, title = {Seismic site characterization using broadband and DAS ambient vibration measurements on Mt Etna, Italy}, doi = {10.25932/publishup-61379}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613793}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2023}, abstract = {Both horizontal-to-vertical (H/V) spectral ratios and the spatial autocorrelation method (SPAC) have proven to be valuable tools to gain insight into local site effects by ambient noise measurements. Here, the two methods are employed to assess the subsurface velocity structure at the Piano delle Concazze area on Mt Etna. Volcanic tremor records from an array of 26 broadband seismometers is processed and a strong variability of H/V ratios during periods of increased volcanic activity is found. From the spatial distribution of H/V peak frequencies, a geologic structure in the north-east of Piano delle Concazze is imaged which is interpreted as the Ellittico caldera rim. The method is extended to include both velocity data from the broadband stations and distributed acoustic sensing data from a co-located 1.5 km long fibre optic cable. High maximum amplitude values of the resulting ratios along the trajectory of the cable coincide with known faults. The outcome also indicates previously unmapped parts of a fault. The geologic interpretation is in good agreement with inversion results from magnetic survey data. Using the neighborhood algorithm, spatial autocorrelation curves obtained from the modified SPAC are inverted alone and jointly with the H/V peak frequencies for 1D shear wave velocity profiles. The obtained models are largely consistent with published models and were able to validate the results from the fibre optic cable.}, language = {en} } @phdthesis{Mantiloni2023, author = {Mantiloni, Lorenzo}, title = {Modeling stress and dike pathways in calerdas}, doi = {10.25932/publishup-61262}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612621}, school = {Universit{\"a}t Potsdam}, pages = {xii, 145}, year = {2023}, abstract = {Volcanic hazard assessment relies on physics-based models of hazards, such as lava flows and pyroclastic density currents, whose outcomes are very sensitive to the location where future eruptions will occur. On the contrary, forecast of vent opening locations in volcanic areas typically relies on purely data-driven approaches, where the spatial density of past eruptive vents informs the probability maps of future vent opening. Such techniques may be suboptimal in volcanic systems with missing or scarce data, and where the controls on magma pathways may change over time. An alternative approach was recently proposed, relying on a model of stress-driven pathways of magmatic dikes. In that approach, the crustal stress was optimized so that dike trajectories linked consistently the location of the magma chamber to that of past vents. The retrieved information on the stress state was then used to forecast future dike trajectories. The validation of such an approach requires extensive application to nature. Before doing so, however, several important limitations need to be removed, most importantly the two-dimensional (2D) character of the models and theoretical concepts. In this thesis, I develop methods and tools so that a physics-based strategy of stress inversion and eruptive vent forecast in volcanoes can be applied to three dimensional (3D) problems. In the first part, I test the stress inversion and vent forecast strategy on analog models, still within a 2D framework, but improving on the efficiency of the stress optimization. In the second part, I discuss how to correctly account for gravitational loading/unloading due to complex 3D topography with a Boundary-Element numerical model. Then, I develop a new, simplified but fast model of dike pathways in 3D, designed for running large numbers of simulations at minimal computational cost, and able to backtrack dike trajectories from vents on the surface. Finally, I combine the stress and dike models to simulate dike pathways in synthetic calderas. In the third part, I describe a framework of stress inversion and vent forecast strategy in 3D for calderas. The stress inversion relies on, first, describing the magma storage below a caldera in terms of a probability density function. Next, dike trajectories are backtracked from the known locations of past vents down through the crust, and the optimization algorithm seeks for the stress models which lead trajectories through the regions of highest probability. I apply the new strategy to the synthetic scenarios presented in the second part, and I exploit the results from the stress inversions to produce probability maps of future vent locations for some of those scenarios. In the fourth part, I present the inversion of different deformation source models applied to the ongoing ground deformation observed across the Rhenish Massif in Central Europe. The region includes the Eifel Volcanic Fields in Germany, a potential application case for the vent forecast strategy. The results show how the observed deformation may be due to melt accumulation in sub-horizontal structures in the lower crust or upper mantle. The thesis concludes with a discussion of the stress inversion and vent forecast strategy, its limitations and applicability to real volcanoes. Potential developments of the modeling tools and concepts presented here are also discussed, as well as possible applications to other geophysical problems.}, language = {en} } @phdthesis{Zakharova2015, author = {Zakharova, Olga}, title = {Analysis and modeling of transient earthquake patterns and their dependence on local stress regimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86455}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 94}, year = {2015}, abstract = {Investigations in the field of earthquake triggering and associated interactions, which includes aftershock triggering as well as induced seismicity, is important for seismic hazard assessment due to earthquakes destructive power. One of the approaches to study earthquake triggering and their interactions is the use of statistical earthquake models, which are based on knowledge of the basic seismicity properties, in particular, the magnitude distribution and spatiotemporal properties of the triggered events. In my PhD thesis I focus on some specific aspects of aftershock properties, namely, the relative seismic moment release of the aftershocks with respect to the mainshocks; the spatial correlation between aftershock occurrence and fault deformation; and on the influence of aseismic transients on the aftershock parameter estimation. For the analysis of aftershock sequences I choose a statistical approach, in particular, the well known Epidemic Type Aftershock Sequence (ETAS) model, which accounts for the input of background and triggered seismicity. For my specific purposes, I develop two ETAS model modifications in collaboration with Sebastian Hainzl. By means of this approach, I estimate the statistical aftershock parameters and performed simulations of aftershock sequences as well. In the case of seismic moment release of aftershocks, I focus on the ratio of cumulative seismic moment release with respect to the mainshocks. Specifically, I investigate the ratio with respect to the focal mechanism of the mainshock and estimate an effective magnitude, which represents the cumulative aftershock energy (similar to Bath's law, which defines the average difference between mainshock and the largest aftershock magnitudes). Furthermore, I compare the observed seismic moment ratios with the results of the ETAS simulations. In particular, I test a restricted ETAS (RETAS) model which is based on results of a clock advanced model and static stress triggering. To analyze spatial variations of triggering parameters I focus in my second approach on the aftershock occurrence triggered by large mainshocks and the study of the aftershock parameter distribution and their spatial correlation with the coseismic/postseismic slip and interseismic locking. To invert the aftershock parameters I improve the modified ETAS (m-ETAS) model, which is able to take the extension of the mainshock rupture into account. I compare the results obtained by the classical approach with the output of the m-ETAS model. My third approach is concerned with the temporal clustering of seismicity, which might not only be related to earthquake-earthquake interactions, but also to a time-dependent background rate, potentially biasing the parameter estimations. Thus, my coauthors and I also applied a modification of the ETAS model, which is able to take into account time-dependent background activity. It can be applicable for two different cases: when an aftershock catalog has a temporal incompleteness or when the background seismicity rate changes with time, due to presence of aseismic forces. An essential part of any research is the testing of the developed models using observational data sets, which are appropriate for the particular study case. Therefore, in the case of seismic moment release I use the global seismicity catalog. For the spatial distribution of triggering parameters I exploit two aftershock sequences of the Mw8.8 2010 Maule (Chile) and Mw 9.0 2011 Tohoku (Japan) mainshocks. In addition, I use published geodetic slip models of different authors. To test our ability to detect aseismic transients my coauthors and I use the data sets from Western Bohemia (Central Europe) and California. Our results indicate that: (1) the seismic moment of aftershocks with respect to mainshocks depends on the static stress changes and is maximal for the normal, intermediate for thrust and minimal for strike-slip stress regimes, where the RETAS model shows a good correspondence with the results; (2) The spatial distribution of aftershock parameters, obtained by the m-ETAS model, shows anomalous values in areas of reactivated crustal fault systems. In addition, the aftershock density is found to be correlated with coseismic slip gradient, afterslip, interseismic coupling and b-values. Aftershock seismic moment is positively correlated with the areas of maximum coseismic slip and interseismically locked areas. These correlations might be related to the stress level or to material properties variations in space; (3) Ignoring aseismic transient forcing or temporal catalog incompleteness can lead to the significant under- or overestimation of the underlying trigger parameters. In the case when a catalog is complete, this method helps to identify aseismic sources.}, language = {en} } @phdthesis{Siddiqui2017, author = {Siddiqui, Tarique Adnan}, title = {Long-term investigation of the lunar tide in the equatorial electrojet during stratospheric sudden warmings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406384}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 116}, year = {2017}, abstract = {The ionosphere, which is strongly influenced by the Sun, is known to be also affected by meteorological processes. These processes, despite having their origin in the troposphere and stratosphere, interact with the upper atmosphere. Such an interaction between atmospheric layers is known as vertical coupling. During geomagnetically quiet times, when near-Earth space is not under the influence of solar storms, these processes become important drivers for ionospheric variability. Studying the link between these processes in the lower atmosphere and the ionospheric variability is important for our understanding of fundamental mechanisms in ionospheric and meteorological research. A prominent example of vertical coupling between the stratosphere and the ionosphere are the so-called stratospheric sudden warming (SSW) events that occur usually during northern winters and result in an increase in the polar stratospheric temperature and a reversal of the circumpolar winds. While the phenomenon of SSW is confined to the northern polar stratosphere, its influence on the ionosphere can be observed even at equatorial latitudes. During SSW events, the connection between the polar stratosphere and the equatorial ionosphere is believed to be through the modulation of global atmospheric tides. These tides are fundamental for the ionospheric E-region wind dynamo that generates electric fields and currents in the ionosphere. Observations of ionospheric currents indicate a large enhancement of the semidiurnal lunar tide in response to SSW events. Thus, the semidiurnal lunar tide becomes an important driver of ionospheric variability during SSW events. In this thesis, the ionospheric effect of SSW events is investigated in the equatorial region, where a narrow but an intense E-region current known as the equatorial electrojet (EEJ) flows above the dip equator during the daytime. The day-to-day variability of the EEJ can be determined from magnetic field records at geomagnetic observatories close to the dip equator. Such magnetic data are available for several decades and allows to investigate the impact of SSW events on the EEJ and, even more importantly, helps in understanding the effects of SSW events on the equatorial ionosphere. An excellent long-term record of the geomagnetic field at the equator from 1922 onwards is available for the observatory Huancayo in Peru and is extensively utilized in this study. The central subject of this thesis is the investigation of lunar tides in the EEJ during SSW events by analyzing long time series. This is done by estimating the lunar tidal amplitude in the EEJ from the magnetic records at Huancayo and by comparing them to measurements of the polar stratospheric wind and temperature, which led to the identification of the known SSW events from 1952 onwards. One goal of this thesis is to identify SSW events that predate 1952. To this end, superposed epoch analysis (SEA) is employed to establish a relationship between the lunar tidal power and the wind and temperature conditions in the lower atmosphere. A threshold value for the lunar tidal power is identified that is discriminative for the known SSW events. This threshold is then used to identify lunar tidal enhancements, which are indicative for any historic SSW events prior to 1952. It can be shown, that the number of lunar tidal enhancements and thus the occurrence frequency of historic SSW events between 1926 and 1952 is similar to the occurrence frequency of the known SSW events from 1952 onwards. Next to the classic SSW definition, the concept of polar vortex weakening (PVW) is utilized in this thesis. PVW is defined for higher latitudes and altitudes (≈ 40km) than the classical SSW definition (≈ 32km). The correlation between the timing and magnitude of lunar tidal enhancements in the EEJ and the timing and magnitude of PVW is found to be better than for the classic SSW definition. This suggests that the lunar tidal enhancements in the EEJ are closely linked to the state of the middle atmosphere. Geomagnetic observatories located in different longitudes at the dip equator allow investigating the longitudinally dependent variability of the EEJ during SSW events. For this purpose, the lunar tidal enhancements in the EEJ are determined for the Peruvian and Indian sectors during the major SSW events of the years 2006 and 2009. It is found that the lunar tidal amplitude shows similar enhancements in the Peruvian sector during both SSW events, while the enhancements are notably different for the two events in the Indian sector. In summary, this thesis shows that lunar tidal enhancements in the EEJ are indeed correlated to the occurrence of SSW events and they should be considered a prominent driver of low latitude ionospheric variability. Secondly, lunar tidal enhancements are found to be longitudinally variable. This suggests that regional effects, such as ionospheric conductivity and the geometry and strength of the geomagnetic field, also play an important role and have to be considered when investigating the mechanisms behind vertical coupling.}, language = {en} } @phdthesis{Zhelavskaya2020, author = {Zhelavskaya, Irina S.}, title = {Modeling of the Plasmasphere Dynamics}, doi = {10.25932/publishup-48243}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482433}, school = {Universit{\"a}t Potsdam}, pages = {xlii, 256}, year = {2020}, abstract = {The plasmasphere is a dynamic region of cold, dense plasma surrounding the Earth. Its shape and size are highly susceptible to variations in solar and geomagnetic conditions. Having an accurate model of plasma density in the plasmasphere is important for GNSS navigation and for predicting hazardous effects of radiation in space on spacecraft. The distribution of cold plasma and its dynamic dependence on solar wind and geomagnetic conditions remain, however, poorly quantified. Existing empirical models of plasma density tend to be oversimplified as they are based on statistical averages over static parameters. Understanding the global dynamics of the plasmasphere using observations from space remains a challenge, as existing density measurements are sparse and limited to locations where satellites can provide in-situ observations. In this dissertation, we demonstrate how such sparse electron density measurements can be used to reconstruct the global electron density distribution in the plasmasphere and capture its dynamic dependence on solar wind and geomagnetic conditions. First, we develop an automated algorithm to determine the electron density from in-situ measurements of the electric field on the Van Allen Probes spacecraft. In particular, we design a neural network to infer the upper hybrid resonance frequency from the dynamic spectrograms obtained with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite, which is then used to calculate the electron number density. The developed Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm is applied to more than four years of EMFISIS measurements to produce the publicly available electron density data set. We utilize the obtained electron density data set to develop a new global model of plasma density by employing a neural network-based modeling approach. In addition to the location, the model takes the time history of geomagnetic indices and location as inputs, and produces electron density in the equatorial plane as an output. It is extensively validated using in-situ density measurements from the Van Allen Probes mission, and also by comparing the predicted global evolution of the plasmasphere with the global IMAGE EUV images of He+ distribution. The model successfully reproduces erosion of the plasmasphere on the night side as well as plume formation and evolution, and agrees well with data. The performance of neural networks strongly depends on the availability of training data, which is limited during intervals of high geomagnetic activity. In order to provide reliable density predictions during such intervals, we can employ physics-based modeling. We develop a new approach for optimally combining the neural network- and physics-based models of the plasmasphere by means of data assimilation. The developed approach utilizes advantages of both neural network- and physics-based modeling and produces reliable global plasma density reconstructions for quiet, disturbed, and extreme geomagnetic conditions. Finally, we extend the developed machine learning-based tools and apply them to another important problem in the field of space weather, the prediction of the geomagnetic index Kp. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere, the radiation belts and the plasmasphere. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast and make short-term predictions of Kp, basing their inferences on the recent history of Kp and solar wind measurements at L1. We analyze how the performance of neural networks compares to other machine learning algorithms for nowcasting and forecasting Kp for up to 12 hours ahead. Additionally, we investigate several machine learning and information theory methods for selecting the optimal inputs to a predictive model of Kp. The developed tools for feature selection can also be applied to other problems in space physics in order to reduce the input dimensionality and identify the most important drivers. Research outlined in this dissertation clearly demonstrates that machine learning tools can be used to develop empirical models from sparse data and also can be used to understand the underlying physical processes. Combining machine learning, physics-based modeling and data assimilation allows us to develop novel methods benefiting from these different approaches.}, language = {en} } @phdthesis{RodriguezZuluaga2020, author = {Rodriguez Zuluaga, Juan}, title = {Electric and magnetic characteristics of equatorial plasma depletions}, doi = {10.25932/publishup-44587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445873}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 87}, year = {2020}, abstract = {Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA's Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm's measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several 'firsts' in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment.}, language = {en} } @phdthesis{Kriegerowski2019, author = {Kriegerowski, Marius}, title = {Development of waveform-based, automatic analysis tools for the spatio-temporal characterization of massive earthquake clusters and swarms}, doi = {10.25932/publishup-44404}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444040}, school = {Universit{\"a}t Potsdam}, pages = {xv, 83}, year = {2019}, abstract = {Earthquake swarms are characterized by large numbers of events occurring in a short period of time within a confined source volume and without significant mainshock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in the absence of active volcanism usually occur in continental rifts as for example in the Eger Rift zone in North West Bohemia, Czech Republic. A common hypothesis links event triggering to pressurized fluids. However, the exact causal chain is often poorly understood since the underlying geotectonic processes are slow compared to tectonic sequences. The high event rate during active periods challenges standard seismological routines as these are often designed for single events and therefore costly in terms of human resources when working with phase picks or computationally costly when exploiting full waveforms. This methodological thesis develops new approaches to analyze earthquake swarm seismicity as well as the underlying seismogenic volume. It focuses on the region of North West (NW) Bohemia, a well studied, well monitored earthquake swarm region. In this work I develop and test an innovative approach to detect and locate earthquakes using deep convolutional neural networks. This technology offers great potential as it allows to efficiently process large amounts of data which becomes increasingly important given that seismological data storage grows at increasing pace. The proposed deep neural network trained on NW Bohemian earthquake swarm records is able to locate 1000 events in less than 1 second using full waveforms while approaching precision of double difference relocated catalogs. A further technological novelty is that the trained filters of the deep neural network's first layer can be repurposed to function as a pattern matching event detector without additional training on noise datasets. For further methodological development and benchmarking, I present a new toolbox to generate realistic earthquake cluster catalogs as well as synthetic full waveforms of those clusters in an automated fashion. The input is parameterized using constraints on source volume geometry, nucleation and frequency-magnitude relations. It harnesses recorded noise to produce highly realistic synthetic data for benchmarking and development. This tool is used to study and assess detection performance in terms of magnitude of completeness Mc of a full waveform detector applied to synthetic data of a hydrofracturing experiment at the Wysin site, Poland. Finally, I present and demonstrate a novel approach to overcome the masking effects of wave propagation between earthquake and stations and to determine source volume attenuation directly in the source volume where clustered earthquakes occur. The new event couple spectral ratio approach exploits high frequency spectral slopes of two events sharing the greater part of their rays. Synthetic tests based on the toolbox mentioned before show that this method is able to infer seismic wave attenuation within the source volume at high spatial resolution. Furthermore, it is independent from the distance towards a station as well as the complexity of the attenuation and velocity structure outside of the source volume of swarms. The application to recordings of the NW Bohemian earthquake swarm shows increased P phase attenuation within the source volume (Qp < 100) based on results at a station located close to the village Luby (LBC). The recordings of a station located in epicentral proximity, close to Nov{\´y} Kostel (NKC), show a relatively high complexity indicating that waves arriving at that station experience more scattering than signals recorded at other stations. The high level of complexity destabilizes the inversion. Therefore, the Q estimate at NKC is not reliable and an independent proof of the high attenuation finding given the geometrical and frequency constraints is still to be done. However, a high attenuation in the source volume of NW Bohemian swarms has been postulated before in relation to an expected, highly damaged zone bearing CO 2 at high pressure. The methods developed in the course of this thesis yield the potential to improve our understanding regarding the role of fluids and gases in intraplate event clustering.}, language = {en} } @phdthesis{Lontsi2016, author = {Lontsi, Agostiny Marrios}, title = {1D shallow sedimentary subsurface imaging using ambient noise and active seismic data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103807}, school = {Universit{\"a}t Potsdam}, pages = {xix, 119}, year = {2016}, abstract = {The Earth's shallow subsurface with sedimentary cover acts as a waveguide to any incoming wavefield. Within the framework of my thesis, I focused on the characterization of this shallow subsurface within tens to few hundreds of meters of sediment cover. I imaged the seismic 1D shear wave velocity (and possibly the 1D compressional wave velocity). This information is not only required for any seismic risk assessment, geotechnical engineering or microzonation activities, but also for exploration and global seismology where site effects are often neglected in seismic waveform modeling. First, the conventional frequency-wavenumber (f - k) technique is used to derive the dispersion characteristic of the propagating surface waves recorded using distinct arrays of seismometers in 1D and 2D configurations. Further, the cross-correlation technique is applied to seismic array data to estimate the Green's function between receivers pairs combination assuming one is the source and the other the receiver. With the consideration of a 1D media, the estimated cross-correlation Green's functions are sorted with interstation distance in a virtual 1D active seismic experiment. The f - k technique is then used to estimate the dispersion curves. This integrated analysis is important for the interpretation of a large bandwidth of the phase velocity dispersion curves and therefore improving the resolution of the estimated 1D Vs profile. Second, the new theoretical approach based on the Diffuse Field Assumption (DFA) is used for the interpretation of the observed microtremors H/V spectral ratio. The theory is further extended in this research work to include not only the interpretation of the H/V measured at the surface, but also the H/V measured at depths and in marine environments. A modeling and inversion of synthetic H/V spectral ratio curves on simple predefined geological structures shows an almost perfect recovery of the model parameters (mainly Vs and to a lesser extent Vp). These results are obtained after information from a receiver at depth has been considered in the inversion. Finally, the Rayleigh wave phase velocity information, estimated from array data, and the H/V(z, f) spectral ratio, estimated from a single station data, are combined and inverted for the velocity profile information. Obtained results indicate an improved depth resolution in comparison to estimations using the phase velocity dispersion curves only. The overall estimated sediment thickness is comparable to estimations obtained by inverting the full micortremor H/V spectral ratio.}, language = {en} } @phdthesis{Metz2023, author = {Metz, Malte}, title = {Finite fault earthquake source inversions}, doi = {10.25932/publishup-61974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619745}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2023}, abstract = {Earthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times via a boundary element approach. As a side product, the source time function on each point on the rupture plane is not constraint and develops by itself without additional parametrization. The code was made publicly available as part of the Pyrocko and Grond Python packages. The approach was compared with conventional modeling for different earthquakes. For example, for the Mw 7.1 2016 Kumamoto, Japan, earthquake, the effects of geometric changes in the rupture surface on the slip and slip rate distributions could be reproduced by simply projecting stress vectors. For the Mw 7.5 2018 Palu, Indonesia, strike-slip earthquake, we also modelled rupture propagation using the 2D Eikonal equation and assuming a linear relationship between rupture and shear wave velocity. This allowed us to give a deeper and faster propagating rupture front and the resulting upward refraction as a new possible explanation for the apparent supershear observed at the Earth's surface. The thesis investigates three aspects of earthquake inversion using PDR: (1) to test whether implementing a simplified rupture model with few parameters into a probabilistic Bayesian scheme without constraining geometric parameters is feasible, and whether this leads to fast and robust results that can be used for subsequent fast information systems (e.g., ground motion predictions). (2) To investigate whether combining broadband and strong-motion seismic records together with near-field ground deformation data improves the reliability of estimated rupture models in a Bayesian inversion. (3) To investigate whether a complex rupture can be represented by the inversion of multiple PDR sources and for what type of earthquakes this is recommended. I developed the PDR inversion approach and applied the joint data inversions to two seismic sequences in different tectonic settings. Using multiple frequency bands and a multiple source inversion approach, I captured the multi-modal behaviour of the Mw 8.2 2021 South Sandwich subduction earthquake with a large, curved and slow rupturing shallow earthquake bounded by two faster and deeper smaller events. I could cross-validate the results with other methods, i.e., P-wave energy back-projection, a clustering analysis of aftershocks and a simple tsunami forward model. The joint analysis of ground deformation and seismic data within a multiple source inversion also shed light on an earthquake triplet, which occurred in July 2022 in SE Iran. From the inversion and aftershock relocalization, I found indications for a vertical separation between the shallower mainshocks within the sedimentary cover and deeper aftershocks at the sediment-basement interface. The vertical offset could be caused by the ductile response of the evident salt layer to stress perturbations from the mainshocks. The applications highlight the versatility of the simple PDR in probabilistic seismic source inversion capturing features of rather different, complex earthquakes. Limitations, as the evident focus on the major slip patches of the rupture are discussed as well as differences to other finite fault modeling methods.}, language = {en} } @phdthesis{Zhou2024, author = {Zhou, Xiangqian}, title = {Modeling of spatially distributed nitrate transport to investigate the effects of drought and river restoration in the Bode catchment, Central Germany}, doi = {10.25932/publishup-62105}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-621059}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 168}, year = {2024}, abstract = {The European Water Framework Directive (WFD) has identified river morphological alteration and diffuse pollution as the two main pressures affecting water bodies in Europe at the catchment scale. Consequently, river restoration has become a priority to achieve the WFD's objective of good ecological status. However, little is known about the effects of stream morphological changes, such as re-meandering, on in-stream nitrate retention at the river network scale. Therefore, catchment nitrate modeling is necessary to guide the implementation of spatially targeted and cost-effective mitigation measures. Meanwhile, Germany, like many other regions in central Europe, has experienced consecutive summer droughts from 2015-2018, resulting in significant changes in river nitrate concentrations in various catchments. However, the mechanistic exploration of catchment nitrate responses to changing weather conditions is still lacking. Firstly, a fully distributed, process-based catchment Nitrate model (mHM-Nitrate) was used, which was properly calibrated and comprehensively evaluated at numerous spatially distributed nitrate sampling locations. Three calibration schemes were designed, taking into account land use, stream order, and mean nitrate concentrations, and they varied in spatial coverage but used data from the same period (2011-2019). The model performance for discharge was similar among the three schemes, with Nash-Sutcliffe Efficiency (NSE) scores ranging from 0.88 to 0.92. However, for nitrate concentrations, scheme 2 outperformed schemes 1 and 3 when compared to observed data from eight gauging stations. This was likely because scheme 2 incorporated a diverse range of data, including low discharge values and nitrate concentrations, and thus provided a better representation of within-catchment heterogenous. Therefore, the study suggests that strategically selecting gauging stations that reflect the full range of within-catchment heterogeneity is more important for calibration than simply increasing the number of stations. Secondly, the mHM-Nitrate model was used to reveal the causal relations between sequential droughts and nitrate concentration in the Bode catchment (3200 km2) in central Germany, where stream nitrate concentrations exhibited contrasting trends from upstream to downstream reaches. The model was evaluated using data from six gauging stations, reflecting different levels of runoff components and their associated nitrate-mixing from upstream to downstream. Results indicated that the mHM-Nitrate model reproduced dynamics of daily discharge and nitrate concentration well, with Nash-Sutcliffe Efficiency ≥ 0.73 for discharge and Kling-Gupta Efficiency ≥ 0.50 for nitrate concentration at most stations. Particularly, the spatially contrasting trends of nitrate concentration were successfully captured by the model. The decrease of nitrate concentration in the lowland area in drought years (2015-2018) was presumably due to (1) limited terrestrial export loading (ca. 40\% lower than that of normal years 2004-2014), and (2) increased in-stream retention efficiency (20\% higher in summer within the whole river network). From a mechanistic modelling perspective, this study provided insights into spatially heterogeneous flow and nitrate dynamics and effects of sequential droughts, which shed light on water-quality responses to future climate change, as droughts are projected to be more frequent. Thirdly, this study investigated the effects of stream restoration via re-meandering on in-stream nitrate retention at network-scale in the well-monitored Bode catchment. The mHM-Nitrate model showed good performance in reproducing daily discharge and nitrate concentrations, with median Kling-Gupta values of 0.78 and 0.74, respectively. The mean and standard deviation of gross nitrate retention efficiency, which accounted for both denitrification and assimilatory uptake, were 5.1 ± 0.61\% and 74.7 ± 23.2\% in winter and summer, respectively, within the stream network. The study found that in the summer, denitrification rates were about two times higher in lowland sub-catchments dominated by agricultural lands than in mountainous sub-catchments dominated by forested areas, with median ± SD of 204 ± 22.6 and 102 ± 22.1 mg N m-2 d-1, respectively. Similarly, assimilatory uptake rates were approximately five times higher in streams surrounded by lowland agricultural areas than in those in higher-elevation, forested areas, with median ± SD of 200 ± 27.1 and 39.1 ± 8.7 mg N m-2 d-1, respectively. Therefore, restoration strategies targeting lowland agricultural areas may have greater potential for increasing nitrate retention. The study also found that restoring stream sinuosity could increase net nitrate retention efficiency by up to 25.4 ± 5.3\%, with greater effects seen in small streams. These results suggest that restoration efforts should consider augmenting stream sinuosity to increase nitrate retention and decrease nitrate concentrations at the catchment scale.}, language = {en} } @phdthesis{Angermann2018, author = {Angermann, Lisa}, title = {Hillslope-stream connectivity across scales}, doi = {10.25932/publishup-42454}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424542}, school = {Universit{\"a}t Potsdam}, pages = {xix, 193}, year = {2018}, abstract = {The concept of hydrologic connectivity summarizes all flow processes that link separate regions of a landscape. As such, it is a central theme in the field of catchment hydrology, with influence on neighboring disciplines such as ecology and geomorphology. It is widely acknowledged to be an important key in understanding the response behavior of a catchment and has at the same time inspired research on internal processes over a broad range of scales. From this process-hydrological point of view, hydrological connectivity is the conceptual framework to link local observations across space and scales. This is the context in which the four studies this thesis comprises of were conducted. The focus was on structures and their spatial organization as important control on preferential subsurface flow. Each experiment covered a part of the conceptualized flow path from hillslopes to the stream: soil profile, hillslope, riparian zone, and stream. For each study site, the most characteristic structures of the investigated domain and scale, such as slope deposits and peat layers were identified based on preliminary or previous investigations or literature reviews. Additionally, further structural data was collected and topographical analyses were carried out. Flow processes were observed either based on response observations (soil moisture changes or discharge patterns) or direct measurement (advective heat transport). Based on these data, the flow-relevance of the characteristic structures was evaluated, especially with regard to hillslope to stream connectivity. Results of the four studies revealed a clear relationship between characteristic spatial structures and the hydrological behavior of the catchment. Especially the spatial distribution of structures throughout the study domain and their interconnectedness were crucial for the establishment of preferential flow paths and their relevance for large-scale processes. Plot and hillslope-scale irrigation experiments showed that the macropores of a heterogeneous, skeletal soil enabled preferential flow paths at the scale of centimeters through the otherwise unsaturated soil. These flow paths connected throughout the soil column and across the hillslope and facilitated substantial amounts of vertical and lateral flow through periglacial slope deposits. In the riparian zone of the same headwater catchment, the connectivity between hillslopes and stream was controlled by topography and the dualism between characteristic subsurface structures and the geomorphological heterogeneity of the stream channel. At the small scale (1 m to 10 m) highest gains always occurred at steps along the longitudinal streambed profile, which also controlled discharge patterns at the large scale (100 m) during base flow conditions (number of steps per section). During medium and high flow conditions, however, the impact of topography and parafluvial flow through riparian zone structures prevailed and dominated the large-scale response patterns. In the streambed of a lowland river, low permeability peat layers affected the connectivity between surface water and groundwater, but also between surface water and the hyporheic zone. The crucial factor was not the permeability of the streambed itself, but rather the spatial arrangement of flow-impeding peat layers, causing increased vertical flow through narrow "windows" in contrast to predominantly lateral flow in extended areas of high hydraulic conductivity sediments. These results show that the spatial organization of structures was an important control for hydrological processes at all scales and study areas. In a final step, the observations from different scales and catchment elements were put in relation and compared. The main focus was on the theoretical analysis of the scale hierarchies of structures and processes and the direction of causal dependencies in this context. Based on the resulting hierarchical structure, a conceptual framework was developed which is capable of representing the system's complexity while allowing for adequate simplifications. The resulting concept of the parabolic scale series is based on the insight that flow processes in the terrestrial part of the catchment (soil and hillslopes) converge. This means that small-scale processes assemble and form large-scale processes and responses. Processes in the riparian zone and the streambed, however, are not well represented by the idea of convergence. Here, the large-scale catchment signal arrives and is modified by structures in the riparian zone, stream morphology, and the small-scale interactions between surface water and groundwater. Flow paths diverge and processes can better be represented by proceeding from large scales to smaller ones. The catchment-scale representation of processes and structures is thus the conceptual link between terrestrial hillslope processes and processes in the riparian corridor.}, language = {en} } @phdthesis{Wendi2018, author = {Wendi, Dadiyorto}, title = {Recurrence Plots and Quantification Analysis of Flood Runoff Dynamics}, doi = {10.25932/publishup-43191}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431915}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2018}, abstract = {This paper introduces a novel measure to assess similarity between event hydrographs. It is based on Cross Recurrence Plots and Recurrence Quantification Analysis which have recently gained attention in a range of disciplines when dealing with complex systems. The method attempts to quantify the event runoff dynamics and is based on the time delay embedded phase space representation of discharge hydrographs. A phase space trajectory is reconstructed from the event hydrograph, and pairs of hydrographs are compared to each other based on the distance of their phase space trajectories. Time delay embedding allows considering the multi-dimensional relationships between different points in time within the event. Hence, the temporal succession of discharge values is taken into account, such as the impact of the initial conditions on the runoff event. We provide an introduction to Cross Recurrence Plots and discuss their parameterization. An application example based on flood time series demonstrates how the method can be used to measure the similarity or dissimilarity of events, and how it can be used to detect events with rare runoff dynamics. It is argued that this methods provides a more comprehensive approach to quantify hydrograph similarity compared to conventional hydrological signatures.}, language = {en} } @phdthesis{Dey2016, author = {Dey, Saptarshi}, title = {Tectonic and climatic control on the evolution of the Himalayan mountain front}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103390}, school = {Universit{\"a}t Potsdam}, pages = {xii, 118}, year = {2016}, abstract = {Variations in the distribution of mass within an orogen may lead to transient sediment storage, which in turn might affect the state of stress and the level of fault activity. Distinguishing between different forcing mechanisms causing variations of sediment flux and tectonic activity, is therefore one of the most challenging tasks in understanding the spatiotemporal evolution of active mountain belts. The Himalayan mountain belt is one of the most significant Cenozoic collisional mountain belt, formed due to collision between northward-bound Indian Plate and the Eurasian Plate during the last 55-50 Ma. Ongoing convergence of these two tectonic plates is accommodated by faulting and folding within the Himalayan arc-shaped orogen and the continued lateral and vertical growth of the Tibetan Plateau and mountain belts adjacent to the plateau as well as regions farther north. Growth of the Himalayan orogen is manifested by the development of successive south-vergent thrust systems. These thrust systems divide the orogen into different morphotectonic domains. From north to south these thrusts are the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The growing topography interacts with moisture-bearing monsoonal winds, which results in pronounced gradients in rainfall, weathering, erosion and sediment transport toward the foreland and beyond. However, a fraction of this sediment is trapped and transiently stored within the intermontane valleys or 'dun's within the lower-elevation foothills of the range. Improved understanding of the spatiotemporal evolution of these sediment archives could provide a unique opportunity to decipher the triggers of variations in sediment production, delivery and storage in an actively deforming mountain belt and support efforts to test linkages between sediment volumes in intermontane basins and changes in the shallow crustal stress field. As sediment redistribution in mountain belts on timescales of 102-104 years can effect cultural characteristics and infrastructure in the intermontane valleys and may even impact the seismotectonics of a mountain belt, there is a heightened interest in understanding sediment-routing processes and causal relationships between tectonism, climate and topography. It is here at the intersection between tectonic processes and superposed climatic and sedimentary processes in the Himalayan orogenic wedge, where my investigation is focused on. The study area is the intermontane Kangra Basin in the northwestern Sub-Himalaya, because the characteristics of the different Himalayan morphotectonic provinces are well developed, the area is part of a region strongly influenced by monsoonal forcing, and the existence of numerous fluvial terraces provides excellent strain markers to assess deformation processes within the Himalayan orogenic wedge. In addition, being located in front of the Dhauladhar Range the region is characterized by pronounced gradients in past and present-day erosion and sediment processes associated with repeatedly changing climatic conditions. In light of these conditions I analysed climate-driven late Pleistocene-Holocene sediment cycles in this tectonically active region, which may be responsible for triggering the tectonic re-organization within the Himalayan orogenic wedge, leading to out-of-sequence thrusting, at least since early Holocene. The Kangra Basin is bounded by the MBT and the Sub-Himalayan Jwalamukhi Thrust (JMT) in the north and south, respectively and transiently stores sediments derived from the Dhauladhar Range. The Basin contains ~200-m-thick conglomerates reflecting two distinct aggradation phases; following aggradation, several fluvial terraces were sculpted into these fan deposits. 10Be CRN surface exposure dating of these terrace levels provides an age of 53.4±3.2 ka for the highest-preserved terrace (AF1); subsequently, this surface was incised until ~15 ka, when the second fan (AF2) began to form. AF2 fan aggradation was superseded by episodic Holocene incision, creating at least four terrace levels. We find a correlation between variations in sediment transport and ∂18O records from regions affected by the Indian Summer Monsoon (ISM). During strengthened ISMs sand post-LGM glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of a weakened ISM coupled with lower sediment supply coincided with renewed re-incision. However, the evolution of fluvial terraces along Sub-Himalayan streams in the Kangra sector is also forced by tectonic processes. Back-tilted, folded terraces clearly document tectonic activity of the JMT. Offset of one of the terrace levels indicates a shortening rate of 5.6±0.8 to 7.5±1.0 mm.a-1 over the last ~10 ka. Importantly, my study reveals that late Pleistocene/Holocene out-of-sequence thrusting accommodates 40-60\% of the total 14±2 mm.a-1 shortening partitioned throughout the Sub-Himalaya. Importantly, the JMT records shortening at a lower rate over longer timescales hints towards out-of-sequence activity within the Sub-Himalaya. Re-activation of the JMT could be related to changes in the tectonic stress field caused by large-scale sediment removal from the basin. I speculate that the deformation processes of the Sub-Himalaya behave according to the predictions of critical wedge model and assume the following: While >200m of sediment aggradation would trigger foreland-ward propagation of the deformation front, re-incision and removal of most of the stored sediments (nearly 80-85\% of the optimum basin-fill) would again create a sub-critical condition of the wedge taper and trigger the retreat of the deformation front. While tectonism is responsible for the longer-term processes of erosion associated with steepening hillslopes, sediment cycles in this environment are mainly the result of climatic forcing. My new 10Be cosmogenic nuclide exposure dates and a synopsis of previous studies show the late Pleistocene to Holocene alluvial fills and fluvial terraces studied here record periodic fluctuations of sediment supply and transport capacity on timescales of 1000-100000 years. To further evaluate the potential influence of climate change on these fluctuations, I compared the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with continental climate archives such as speleothems in neighboring regions affected by monsoonal precipitation. Together with previously published OSL ages yielding the timing of aggradation, I find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon (ISM). Accordingly, during periods of increased monsoon intensity (transitions from dry and cold to wet and warm periods - MIS4 to MIS3 and MIS2 to MIS1) (MIS=marine isotope stage) and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux. Conversely, periods of weakened monsoon intensity or lower sediment supply coincide with re-incision of the existing basin-fill. Finally, my study entails part of a low-temperature thermochronology study to assess the youngest exhumation history of the Dhauladhar Range. Zircon helium (ZHe) ages and existing low-temperature data sets (ZHe, apatite fission track (AFT)) across this range, together with 3D thermokinematic modeling (PECUBE) reveals constraints on exhumation and activity of the range-bounding Main Boundary Thrust (MBT) since at least mid-Miocene time. The modeling results indicate mean slip rates on the MBT-fault ramp of ~2 - 3 mm.a-1 since its activation. This has lead to the growth of the >5-km-high frontal Dhauladhar Range and continuous deep-seated exhumation and erosion. The obtained results also provide interesting constraints of deformation patterns and their variation along strike. The results point towards the absence of the time-transient 'mid-crustal ramp' in the basal decollement and duplexing of the Lesser Himalayan sequence, unlike the nearby regions or even the central Nepal domain. A fraction of convergence (~10-15\%) is accommodated along the deep-seated MBT-ramp, most likely merging into the MHT. This finding is crucial for a rigorous assessment of the overall level of tectonic activity in the Himalayan morphotectonic provinces as it contradicts recently-published geodetic shortening estimates. In these studies, it has been proposed that the total Himalayan shortening in the NW Himalaya is accommodated within the Sub-Himalaya whereas no tectonic activity is assigned to the MBT.}, language = {en} } @phdthesis{Schlemm2022, author = {Schlemm, Tanja}, title = {The marine ice cliff instability of the Antarctic ice sheet}, doi = {10.25932/publishup-58633}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586333}, school = {Universit{\"a}t Potsdam}, pages = {107}, year = {2022}, abstract = {The Antarctic ice sheet is the largest freshwater reservoir worldwide. If it were to melt completely, global sea levels would rise by about 58 m. Calculation of projections of the Antarctic contribution to sea level rise under global warming conditions is an ongoing effort which yields large ranges in predictions. Among the reasons for this are uncertainties related to the physics of ice sheet modeling. These uncertainties include two processes that could lead to runaway ice retreat: the Marine Ice Sheet Instability (MISI), which causes rapid grounding line retreat on retrograde bedrock, and the Marine Ice Cliff Instability (MICI), in which tall ice cliffs become unstable and calve off, exposing even taller ice cliffs. In my thesis, I investigated both marine instabilities (MISI and MICI) using the Parallel Ice Sheet Model (PISM), with a focus on MICI.}, language = {en} } @phdthesis{RodriguezPiceda2022, author = {Rodriguez Piceda, Constanza}, title = {Thermomechanical state of the southern Central Andes}, doi = {10.25932/publishup-54927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549275}, school = {Universit{\"a}t Potsdam}, pages = {xx, 228}, year = {2022}, abstract = {The Andes are a ~7000 km long N-S trending mountain range developed along the South American western continental margin. Driven by the subduction of the oceanic Nazca plate beneath the continental South American plate, the formation of the northern and central parts of the orogen is a type case for a non-collisional orogeny. In the southern Central Andes (SCA, 29°S-39°S), the oceanic plate changes the subduction angle between 33°S and 35°S from almost horizontal (< 5° dip) in the north to a steeper angle (~30° dip) in the south. This sector of the Andes also displays remarkable along- and across- strike variations of the tectonic deformation patterns. These include a systematic decrease of topographic elevation, of crustal shortening and foreland and orogenic width, as well as an alternation of the foreland deformation style between thick-skinned and thin-skinned recorded along- and across the strike of the subduction zone. Moreover, the SCA are a very seismically active region. The continental plate is characterized by a relatively shallow seismicity (< 30 km depth) which is mainly focussed at the transition from the orogen to the lowland areas of the foreland and the forearc; in contrast, deeper seismicity occurs below the interiors of the northern foreland. Additionally, frequent seismicity is also recorded in the shallow parts of the oceanic plate and in a sector of the flat slab segment between 31°S and 33°S. The observed spatial heterogeneity in tectonic and seismic deformation in the SCA has been attributed to multiple causes, including variations in sediment thickness, the presence of inherited structures and changes in the subduction angle of the oceanic slab. However, there is no study that inquired the relationship between the long-term rheological configuration of the SCA and the spatial deformation patterns. Moreover, the effects of the density and thickness configuration of the continental plate and of variations in the slab dip angle in the rheological state of the lithosphere have been not thoroughly investigated yet. Since rheology depends on composition, pressure and temperature, a detailed characterization of the compositional, structural and thermal fields of the lithosphere is needed. Therefore, by using multiple geophysical approaches and data sources, I constructed the following 3D models of the SCA lithosphere: (i) a seismically-constrained structural and density model that was tested against the gravity field; (ii) a thermal model integrating the conversion of mantle shear-wave velocities to temperature with steady-state conductive calculations in the uppermost lithosphere (< 50 km depth), validated by temperature and heat-flow measurements; and (iii) a rheological model of the long-term lithospheric strength using as input the previously-generated models. The results of this dissertation indicate that the present-day thermal and rheological fields of the SCA are controlled by different mechanisms at different depths. At shallow depths (< 50 km), the thermomechanical field is modulated by the heterogeneous composition of the continental lithosphere. The overprint of the oceanic slab is detectable where the oceanic plate is shallow (< 85 km depth) and the radiogenic crust is thin, resulting in overall lower temperatures and higher strength compared to regions where the slab is steep and the radiogenic crust is thick. At depths > 50 km, largest temperatures variations occur where the descending slab is detected, which implies that the deep thermal field is mainly affected by the slab dip geometry. The outcomes of this thesis suggests that long-term thermomechanical state of the lithosphere influences the spatial distribution of seismic deformation. Most of the seismicity within the continental plate occurs above the modelled transition from brittle to ductile conditions. Additionally, there is a spatial correlation between the location of these events and the transition from the mechanically strong domains of the forearc and foreland to the weak domain of the orogen. In contrast, seismicity within the oceanic plate is also detected where long-term ductile conditions are expected. I therefore analysed the possible influence of additional mechanisms triggering these earthquakes, including the compaction of sediments in the subduction interface and dehydration reactions in the slab. To that aim, I carried out a qualitative analysis of the state of hydration in the mantle using the ratio between compressional- and shear-wave velocity (vp/vs ratio) from a previous seismic tomography. The results from this analysis indicate that the majority of the seismicity spatially correlates with hydrated areas of the slab and overlying continental mantle, with the exception of the cluster within the flat slab segment. In this region, earthquakes are likely triggered by flexural processes where the slab changes from a flat to a steep subduction angle. First-order variations in the observed tectonic patterns also seem to be influenced by the thermomechanical configuration of the lithosphere. The mechanically strong domains of the forearc and foreland, due to their resistance to deformation, display smaller amounts of shortening than the relatively weak orogenic domain. In addition, the structural and thermomechanical characteristics modelled in this dissertation confirm previous analyses from geodynamic models pointing to the control of the observed heterogeneities in the orogen and foreland deformation style. These characteristics include the lithospheric and crustal thickness, the presence of weak sediments and the variations in gravitational potential energy. Specific conditions occur in the cold and strong northern foreland, which is characterized by active seismicity and thick-skinned structures, although the modelled crustal strength exceeds the typical values of externally-applied tectonic stresses. The additional mechanisms that could explain the strain localization in a region that should resist deformation are: (i) increased tectonic forces coming from the steepening of the slab and (ii) enhanced weakening along inherited structures from pre-Andean deformation events. Finally, the thermomechanical conditions of this sector of the foreland could be a key factor influencing the preservation of the flat subduction angle at these latitudes of the SCA.}, language = {en} }