@book{LinckelsMeinel2005, author = {Linckels, Serge and Meinel, Christoph}, title = {An e-librarian service : natural language interface for an efficient semantic search within multimedia resources}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-937786-89-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33088}, publisher = {Universit{\"a}t Potsdam}, pages = {40}, year = {2005}, abstract = {1 Introduction 1.1 Project formulation 1.2 Our contribution 2 Pedagogical Aspect 4 2.1 Modern teaching 2.2 Our Contribution 2.2.1 Autonomous and exploratory learning 2.2.2 Human machine interaction 2.2.3 Short multimedia clips 3 Ontology Aspect 3.1 Ontology driven expert systems 3.2 Our contribution 3.2.1 Ontology language 3.2.2 Concept Taxonomy 3.2.3 Knowledge base annotation 3.2.4 Description Logics 4 Natural language approach 4.1 Natural language processing in computer science 4.2 Our contribution 4.2.1 Explored strategies 4.2.2 Word equivalence 4.2.3 Semantic interpretation 4.2.4 Various problems 5 Information Retrieval Aspect 5.1 Modern information retrieval 5.2 Our contribution 5.2.1 Semantic query generation 5.2.2 Semantic relatedness 6 Implementation 6.1 Prototypes 6.2 Semantic layer architecture 6.3 Development 7 Experiments 7.1 Description of the experiments 7.2 General characteristics of the three sessions, instructions and procedure 7.3 First Session 7.4 Second Session 7.5 Third Session 7.6 Discussion and conclusion 8 Conclusion and future work 8.1 Conclusion 8.2 Open questions A Description Logics B Probabilistic context-free grammars}, language = {en} } @book{HuCordelMeinel2006, author = {Hu, Ji and Cordel, Dirk and Meinel, Christoph}, title = {A virtual machine architecture for creating IT-security laboratories}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-939469-13-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33077}, publisher = {Universit{\"a}t Potsdam}, pages = {50}, year = {2006}, abstract = {E-learning is a flexible and personalized alternative to traditional education. Nonetheless, existing e-learning systems for IT security education have difficulties in delivering hands-on experience because of the lack of proximity. Laboratory environments and practical exercises are indispensable instruction tools to IT security education, but security education in con-ventional computer laboratories poses the problem of immobility as well as high creation and maintenance costs. Hence, there is a need to effectively transform security laboratories and practical exercises into e-learning forms. This report introduces the Tele-Lab IT-Security architecture that allows students not only to learn IT security principles, but also to gain hands-on security experience by exercises in an online laboratory environment. In this architecture, virtual machines are used to provide safe user work environments instead of real computers. Thus, traditional laboratory environments can be cloned onto the Internet by software, which increases accessibilities to laboratory resources and greatly reduces investment and maintenance costs. Under the Tele-Lab IT-Security framework, a set of technical solutions is also proposed to provide effective functionalities, reliability, security, and performance. The virtual machines with appropriate resource allocation, software installation, and system configurations are used to build lightweight security laboratories on a hosting computer. Reliability and availability of laboratory platforms are covered by the virtual machine management framework. This management framework provides necessary monitoring and administration services to detect and recover critical failures of virtual machines at run time. Considering the risk that virtual machines can be misused for compromising production networks, we present security management solutions to prevent misuse of laboratory resources by security isolation at the system and network levels. This work is an attempt to bridge the gap between e-learning/tele-teaching and practical IT security education. It is not to substitute conventional teaching in laboratories but to add practical features to e-learning. This report demonstrates the possibility to implement hands-on security laboratories on the Internet reliably, securely, and economically.}, language = {en} } @book{OPUS4-8627, title = {HPI Future SOC Lab}, editor = {Meinel, Christoph and Polze, Andreas and Oswald, Gerhard and Strotmann, Rolf and Seibold, Ulrich and Schulzki, Bernhard}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86271}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 250}, year = {2014}, abstract = {Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Erm{\"o}glichung und F{\"o}rderung des Austausches zwischen Forschungsgemeinschaft und Industrie. Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei f{\"u}r Forschungszwecke zur Verf{\"u}gung gestellt. Dazu z{\"a}hlen teilweise noch nicht am Markt verf{\"u}gbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren w{\"a}ren, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien. In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2014 vorgestellt. Ausgew{\"a}hlte Projekte stellten ihre Ergebnisse am 9. April 2014 und 29. Oktober 2014 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.}, language = {en} } @book{OPUS4-2793, title = {Proceedings of the 3rd Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-81-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29148}, publisher = {Universit{\"a}t Potsdam}, pages = {Getr. Z{\"a}hlung}, year = {2009}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the Research Scholl, this technical report covers a wide range of research topics. These include but are not limited to: Self-Adaptive Service-Oriented Systems, Operating System Support for Service-Oriented Systems, Architecture and Modeling of Service-Oriented Systems, Adaptive Process Management, Services Composition and Workflow Planning, Security Engineering of Service-Based IT Systems, Quantitative Analysis and Optimization of Service-Oriented Systems, Service-Oriented Systems in 3D Computer Graphics, as well as Service-Oriented Geoinformatics.}, language = {en} } @book{OPUS4-6982, title = {HPI Future SOC Lab}, number = {88}, editor = {Meinel, Christoph and Polze, Andreas and Oswald, Gerhard and Strotmann, Rolf and Seibold, Ulrich and Schulzki, Bernard}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-282-7}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68195}, publisher = {Universit{\"a}t Potsdam}, pages = {iii, 174}, year = {2014}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso-Plattner-Institut (HPI) and industrial partners. Its mission is to enable and promote exchange and interaction between the research community and the industrial partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard- and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2013. Selected projects have presented their results on April 10th and September 24th 2013 at the Future SOC Lab Day events.}, language = {en} } @book{SchmiedgenRhinowKoeppenetal.2015, author = {Schmiedgen, Jan and Rhinow, Holger and K{\"o}ppen, Eva and Meinel, Christoph}, title = {Parts without a whole?}, number = {97}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-334-3}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79969}, publisher = {Universit{\"a}t Potsdam}, pages = {143}, year = {2015}, abstract = {This explorative study gives a descriptive overview of what organizations do and experience when they say they practice design thinking. It looks at how the concept has been appropriated in organizations and also describes patterns of design thinking adoption. The authors use a mixed-method research design fed by two sources: questionnaire data and semi-structured personal expert interviews. The study proceeds in six parts: (1) design thinking¹s entry points into organizations; (2) understandings of the descriptor; (3) its fields of application and organizational localization; (4) its perceived impact; (5) reasons for its discontinuation or failure; and (6) attempts to measure its success. In conclusion the report challenges managers to be more conscious of their current design thinking practice. The authors suggest a co-evolution of the concept¹s introduction with innovation capability building and the respective changes in leadership approaches. It is argued that this might help in unfolding design thinking¹s hidden potentials as well as preventing unintended side-effects such as discontented teams or the dwindling authority of managers.}, language = {en} } @book{MeinelGayvoronskayaSchnjakin2018, author = {Meinel, Christoph and Gayvoronskaya, Tatiana and Schnjakin, Maxim}, title = {Blockchain}, number = {124}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-441-8}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414525}, publisher = {Universit{\"a}t Potsdam}, pages = {102}, year = {2018}, abstract = {The term blockchain has recently become a buzzword, but only few know what exactly lies behind this approach. According to a survey, issued in the first quarter of 2017, the term is only known by 35 percent of German medium-sized enterprise representatives. However, the blockchain technology is very interesting for the mass media because of its rapid development and global capturing of different markets. For example, many see blockchain technology either as an all-purpose weapon— which only a few have access to—or as a hacker technology for secret deals in the darknet. The innovation of blockchain technology is found in its successful combination of already existing approaches: such as decentralized networks, cryptography, and consensus models. This innovative concept makes it possible to exchange values in a decentralized system. At the same time, there is no requirement for trust between its nodes (e.g. users). With this study the Hasso Plattner Institute would like to help readers form their own opinion about blockchain technology, and to distinguish between truly innovative properties and hype. The authors of the present study analyze the positive and negative properties of the blockchain architecture and suggest possible solutions, which can contribute to the efficient use of the technology. We recommend that every company define a clear target for the intended application, which is achievable with a reasonable cost-benefit ration, before deciding on this technology. Both the possibilities and the limitations of blockchain technology need to be considered. The relevant steps that must be taken in this respect are summarized /summed up for the reader in this study. Furthermore, this study elaborates on urgent problems such as the scalability of the blockchain, appropriate consensus algorithm and security, including various types of possible attacks and their countermeasures. New blockchains, for example, run the risk of reducing security, as changes to existing technology can lead to lacks in the security and failures. After discussing the innovative properties and problems of the blockchain technology, its implementation is discussed. There are a lot of implementation opportunities for companies available who are interested in the blockchain realization. The numerous applications have either their own blockchain as a basis or use existing and widespread blockchain systems. Various consortia and projects offer "blockchain-as-a-service{\"a}nd help other companies to develop, test and deploy their own applications. This study gives a detailed overview of diverse relevant applications and projects in the field of blockchain technology. As this technology is still a relatively young and fast developing approach, it still lacks uniform standards to allow the cooperation of different systems and to which all developers can adhere. Currently, developers are orienting themselves to Bitcoin, Ethereum and Hyperledger systems, which serve as the basis for many other blockchain applications. The goal is to give readers a clear and comprehensive overview of blockchain technology and its capabilities.}, language = {en} } @book{OPUS4-3118, title = {Proceedings of the 2. Ph.D. retreat of the HPI Research School on Service-oriented Systems Engineering}, editor = {Meinel, Christoph and Polze, Andreas and Weske, Mathias and D{\"o}llner, J{\"u}rgen Roland Friedrich and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Plattner, Hasso}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-42-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32887}, publisher = {Universit{\"a}t Potsdam}, pages = {Getr. Z{\"a}hlung}, year = {2008}, abstract = {Contents 1. Styling for Service-Based 3D Geovisualization Benjamin Hagedorn 2. The Windows Monitoring Kernel Michael Sch{\"o}bel 3. A Resource-Oriented Information Network Platform for Global Design Processes Matthias Uflacker 4. Federation in SOA - Secure Service Invocation across Trust Domains Michael Menzel 5. KStruct: A Language for Kernel Runtime Inspection Alexander Schmidt 6. Deconstructing Resources Hagen Overdick 7. FMC-QE - Case Studies Stephan Kluth 8. A Matter of Trust Rehab Al-Nemr 9. From Semi-automated Service Composition to Semantic Conformance Harald Meyer}, language = {en} } @book{MeinelSackBross2008, author = {Meinel, Christoph and Sack, Harald and Bross, Justus}, title = {Erster Deutscher IPv6 Gipfel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32865}, publisher = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Inhalt: KOMMUNIQU{\´E} GRUßWORT PROGRAMM HINTERGR{\"U}NDE UND FAKTEN REFERENTEN: BIOGRAFIE \& VOTRAGSZUSAMMENFASSUNG 1.) DER ERSTE DEUTSCHE IPV6 GIPFEL AM HASSO PLATTNER INSTITUT IN POTSDAM - PROF. DR. CHRISTOPH MEINEL - VIVIANE REDING 2.) IPV6, ITS TIME HAS COME - VINTON CERF 3.) DIE BEDEUTUNG VON IPV6 F{\"U}R DIE {\"O}FFENTLICHE VERWALTUNG IN DEUTSCHLAND - MARTIN SCHALLBRUCH 4.) TOWARDS THE FUTURE OF THE INTERNET - PROF. DR. LUTZ HEUSER 5.) IPV6 STRATEGY \& DEPLOYMENT STATUS IN JAPAN - HIROSHI MIYATA 6.) IPV6 STRATEGY \& DEPLOYMENT STATUS IN CHINA - PROF. WU HEQUAN 7.) IPV6 STRATEGY AND DEPLOYMENT STATUS IN KOREA - DR. EUNSOOK KIM 8.) IPV6 DEPLOYMENT EXPERIENCES IN GREEK SCHOOL NETWORK - ATHANASSIOS LIAKOPOULOS 9.) IPV6 NETWORK MOBILITY AND IST USAGE - JEAN-MARIE BONNIN 10.) IPV6 - R{\"U}STZEUG F{\"U}R OPERATOR \& ISP IPV6 DEPLOYMENT UND STRATEGIEN DER DEUTSCHEN TELEKOM - HENNING GROTE 11.) VIEW FROM THE IPV6 DEPLOYMENT FRONTLINE - YVES POPPE 12.) DEPLOYING IPV6 IN MOBILE ENVIRONMENTS - WOLFGANG FRITSCHE 13.) PRODUCTION READY IPV6 FROM CUSTOMER LAN TO THE INTERNET - LUTZ DONNERHACKE 14.) IPV6 - DIE BASIS F{\"U}R NETZWERKZENTRIERTE OPERATIONSF{\"U}HRUNG (NETOPF{\"U}) IN DER BUNDESWEHR HERAUSFORDERUNGEN - ANWENDUNGSFALLBETRACHTUNGEN - AKTIVIT{\"A}TEN - CARSTEN HATZIG 15.) WINDOWS VISTA \& IPV6 - BERND OURGHANLIAN 16.) IPV6 \& HOME NETWORKING TECHINCAL AND BUSINESS CHALLENGES - DR. TAYEB BEN MERIEM 17.) DNS AND DHCP FOR DUAL STACK NETWORKS - LAWRENCE HUGHES 18.) CAR INDUSTRY: GERMAN EXPERIENCE WITH IPV6 - AMARDEO SARMA 19.) IPV6 \& AUTONOMIC NETWORKING - RANGANAI CHAPARADZA 20.) P2P \& GRID USING IPV6 AND MOBILE IPV6 - DR. LATIF LADID}, language = {en} } @book{OPUS4-4807, title = {Proceedings of the Fall 2010 Future SOC Lab Day}, editor = {Meinel, Christoph and Polze, Andreas and Zeier, Alexander}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-114-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49761}, publisher = {Universit{\"a}t Potsdam}, pages = {ii, 75}, year = {2011}, abstract = {In Kooperation mit Partnern aus der Industrie etabliert das Hasso-Plattner-Institut (HPI) ein "HPI Future SOC Lab", das eine komplette Infrastruktur von hochkomplexen on-demand Systemen auf neuester, am Markt noch nicht verf{\"u}gbarer, massiv paralleler (multi-/many-core) Hardware mit enormen Hauptspeicherkapazit{\"a}ten und daf{\"u}r konzipierte Software bereitstellt. Das HPI Future SOC Lab verf{\"u}gt {\"u}ber prototypische 4- und 8-way Intel 64-Bit Serversysteme von Fujitsu und Hewlett-Packard mit 32- bzw. 64-Cores und 1 - 2 TB Hauptspeicher. Es kommen weiterhin hochperformante Speichersysteme von EMC² sowie Virtualisierungsl{\"o}sungen von VMware zum Einsatz. SAP stellt ihre neueste Business by Design (ByD) Software zur Verf{\"u}gung und auch komplexe reale Unternehmensdaten stehen zur Verf{\"u}gung, auf die f{\"u}r Forschungszwecke zugegriffen werden kann. Interessierte Wissenschaftler aus universit{\"a}ren und außeruniversit{\"a}ren Forschungsinstitutionen k{\"o}nnen im HPI Future SOC Lab zuk{\"u}nftige hoch-komplexe IT-Systeme untersuchen, neue Ideen / Datenstrukturen / Algorithmen entwickeln und bis hin zur praktischen Erprobung verfolgen. Dieser Technische Bericht stellt erste Ergebnisse der im Rahmen der Er{\"o}ffnung des Future SOC Labs im Juni 2010 gestarteten Forschungsprojekte vor. Ausgew{\"a}hlte Projekte stellten ihre Ergebnisse am 27. Oktober 2010 im Rahmen der Future SOC Lab Tag Veranstaltung vor.}, language = {en} } @book{SchneiderLambersOrejas2017, author = {Schneider, Sven and Lambers, Leen and Orejas, Fernando}, title = {Symbolic model generation for graph properties}, number = {115}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-396-1}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103171}, publisher = {Universit{\"a}t Potsdam}, pages = {48}, year = {2017}, abstract = {Graphs are ubiquitous in Computer Science. For this reason, in many areas, it is very important to have the means to express and reason about graph properties. In particular, we want to be able to check automatically if a given graph property is satisfiable. Actually, in most application scenarios it is desirable to be able to explore graphs satisfying the graph property if they exist or even to get a complete and compact overview of the graphs satisfying the graph property. We show that the tableau-based reasoning method for graph properties as introduced by Lambers and Orejas paves the way for a symbolic model generation algorithm for graph properties. Graph properties are formulated in a dedicated logic making use of graphs and graph morphisms, which is equivalent to firstorder logic on graphs as introduced by Courcelle. Our parallelizable algorithm gradually generates a finite set of so-called symbolic models, where each symbolic model describes a set of finite graphs (i.e., finite models) satisfying the graph property. The set of symbolic models jointly describes all finite models for the graph property (complete) and does not describe any finite graph violating the graph property (sound). Moreover, no symbolic model is already covered by another one (compact). Finally, the algorithm is able to generate from each symbolic model a minimal finite model immediately and allows for an exploration of further finite models. The algorithm is implemented in the new tool AutoGraph.}, language = {en} } @book{KlauckMaschlerTausche2017, author = {Klauck, Stefan and Maschler, Fabian and Tausche, Karsten}, title = {Proceedings of the Fourth HPI Cloud Symposium "Operating the Cloud" 2016}, number = {117}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-401-2}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394513}, publisher = {Universit{\"a}t Potsdam}, pages = {32}, year = {2017}, abstract = {Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic "Operating the Cloud". Our goal is to provide a forum for the exchange of knowledge and experience between industry and academia. Co-located with the event is the HPI's Future SOC Lab day, which offers an additional attractive and conducive environment for scientific and industry related discussions. "Operating the Cloud" aims to be a platform for productive interactions of innovative ideas, visions, and upcoming technologies in the field of cloud operation and administration. On the occasion of this symposium we called for submissions of research papers and practitioner's reports. A compilation of the research papers realized during the fourth HPI cloud symposium "Operating the Cloud" 2016 are published in this proceedings. We thank the authors for exciting presentations and insights into their current work and research. Moreover, we look forward to more interesting submissions for the upcoming symposium later in the year. Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic "Operating the Cloud". Our goal is to provide a forum for the exchange of knowledge and experience between industry and academia. Co-located with the event is the HPI's Future SOC Lab day, which offers an additional attractive and conducive environment for scientific and industry related discussions. "Operating the Cloud" aims to be a platform for productive interactions of innovative ideas, visions, and upcoming technologies in the field of cloud operation and administration.}, language = {en} } @book{DyckGieseLambers2017, author = {Dyck, Johannes and Giese, Holger and Lambers, Leen}, title = {Automatic verification of behavior preservation at the transformation level for relational model transformation}, number = {112}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-391-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100279}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 112}, year = {2017}, abstract = {The correctness of model transformations is a crucial element for model-driven engineering of high quality software. In particular, behavior preservation is the most important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques either show that specific properties are preserved, or more generally and complex, they show some kind of behavioral equivalence or refinement between source and target model of the transformation. Both kinds of behavior preservation verification goals have been presented with automatic tool support for the instance level, i.e. for a given source and target model specified by the model transformation. However, up until now there is no automatic verification approach available at the transformation level, i.e. for all source and target models specified by the model transformation. In this report, we extend our results presented in [27] and outline a new sophisticated approach for the automatic verification of behavior preservation captured by bisimulation resp. simulation for model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we show that the behavior preservation problem can be reduced to invariant checking for graph transformation and that the resulting checking problem can be addressed by our own invariant checker even for a complex example where a sequence chart is transformed into communicating automata. We further discuss today's limitations of invariant checking for graph transformation and motivate further lines of future work in this direction.}, language = {en} } @book{WeyandChromikWolfetal.2017, author = {Weyand, Christopher and Chromik, Jonas and Wolf, Lennard and K{\"o}tte, Steffen and Haase, Konstantin and Felgentreff, Tim and Lincke, Jens and Hirschfeld, Robert}, title = {Improving hosted continuous integration services}, number = {108}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-377-0}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94251}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 114}, year = {2017}, abstract = {Developing large software projects is a complicated task and can be demanding for developers. Continuous integration is common practice for reducing complexity. By integrating and testing changes often, changesets are kept small and therefore easily comprehensible. Travis CI is a service that offers continuous integration and continuous deployment in the cloud. Software projects are build, tested, and deployed using the Travis CI infrastructure without interrupting the development process. This report describes how Travis CI works, presents how time-driven, periodic building is implemented as well as how CI data visualization can be done, and proposes a way of dealing with dependency problems.}, language = {en} } @book{TessenowFelgentreffBrachaetal.2016, author = {Tessenow, Philipp and Felgentreff, Tim and Bracha, Gilad and Hirschfeld, Robert}, title = {Extending a dynamic programming language and runtime environment with access control}, number = {107}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-373-2}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-92560}, publisher = {Universit{\"a}t Potsdam}, pages = {83}, year = {2016}, abstract = {Complexity in software systems is a major factor driving development and maintenance costs. To master this complexity, software is divided into modules that can be developed and tested separately. In order to support this separation of modules, each module should provide a clean and concise public interface. Therefore, the ability to selectively hide functionality using access control is an important feature in a programming language intended for complex software systems. Software systems are increasingly distributed, adding not only to their inherent complexity, but also presenting security challenges. The object-capability approach addresses these challenges by defining language properties providing only minimal capabilities to objects. One programming language that is based on the object-capability approach is Newspeak, a dynamic programming language designed for modularity and security. The Newspeak specification describes access control as one of Newspeak's properties, because it is a requirement for the object-capability approach. However, access control, as defined in the Newspeak specification, is currently not enforced in its implementation. This work introduces an access control implementation for Newspeak, enabling the security of object-capabilities and enhancing modularity. We describe our implementation of access control for Newspeak. We adapted the runtime environment, the reflective system, the compiler toolchain, and the virtual machine. Finally, we describe a migration strategy for the existing Newspeak code base, so that our access control implementation can be integrated with minimal effort.}, language = {en} } @book{BeckmannHildebrandJascheketal.2019, author = {Beckmann, Tom and Hildebrand, Justus and Jaschek, Corinna and Krebs, Eva and L{\"o}ser, Alexander and Taeumel, Marcel and Pape, Tobias and Fister, Lasse and Hirschfeld, Robert}, title = {The font engineering platform}, number = {128}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-464-7}, issn = {1613-5652}, doi = {10.25932/publishup-42748}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427487}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 115}, year = {2019}, abstract = {Creating fonts is a complex task that requires expert knowledge in a variety of domains. Often, this knowledge is not held by a single person, but spread across a number of domain experts. A central concept needed for designing fonts is the glyph, an elemental symbol representing a readable character. Required domains include designing glyph shapes, engineering rules to combine glyphs for complex scripts and checking legibility. This process is most often iterative and requires communication in all directions. This report outlines a platform that aims to enhance the means of communication, describes our prototyping process, discusses complex font rendering and editing in a live environment and an approach to generate code based on a user's live-edits.}, language = {en} } @book{SchneiderLambersOrejas2019, author = {Schneider, Sven and Lambers, Leen and Orejas, Fernando}, title = {A logic-based incremental approach to graph repair}, number = {126}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-462-3}, issn = {1613-5652}, doi = {10.25932/publishup-42751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427517}, publisher = {Universit{\"a}t Potsdam}, pages = {34}, year = {2019}, abstract = {Graph repair, restoring consistency of a graph, plays a prominent role in several areas of computer science and beyond: For example, in model-driven engineering, the abstract syntax of models is usually encoded using graphs. Flexible edit operations temporarily create inconsistent graphs not representing a valid model, thus requiring graph repair. Similarly, in graph databases—managing the storage and manipulation of graph data—updates may cause that a given database does not satisfy some integrity constraints, requiring also graph repair. We present a logic-based incremental approach to graph repair, generating a sound and complete (upon termination) overview of least-changing repairs. In our context, we formalize consistency by so-called graph conditions being equivalent to first-order logic on graphs. We present two kind of repair algorithms: State-based repair restores consistency independent of the graph update history, whereas deltabased (or incremental) repair takes this history explicitly into account. Technically, our algorithms rely on an existing model generation algorithm for graph conditions implemented in AutoGraph. Moreover, the delta-based approach uses the new concept of satisfaction (ST) trees for encoding if and how a graph satisfies a graph condition. We then demonstrate how to manipulate these STs incrementally with respect to a graph update.}, language = {en} } @book{GieseMaximovaSakizloglouetal.2019, author = {Giese, Holger and Maximova, Maria and Sakizloglou, Lucas and Schneider, Sven}, title = {Metric temporal graph logic over typed attributed graphs}, number = {127}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-463-0}, issn = {1613-5652}, doi = {10.25932/publishup-42752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427522}, publisher = {Universit{\"a}t Potsdam}, pages = {34}, year = {2019}, abstract = {Graph repair, restoring consistency of a graph, plays a prominent role in several areas of computer science and beyond: For example, in model-driven engineering, the abstract syntax of models is usually encoded using graphs. Flexible edit operations temporarily create inconsistent graphs not representing a valid model, thus requiring graph repair. Similarly, in graph databases—managing the storage and manipulation of graph data—updates may cause that a given database does not satisfy some integrity constraints, requiring also graph repair. We present a logic-based incremental approach to graph repair, generating a sound and complete (upon termination) overview of least-changing repairs. In our context, we formalize consistency by so-called graph conditions being equivalent to first-order logic on graphs. We present two kind of repair algorithms: State-based repair restores consistency independent of the graph update history, whereas deltabased (or incremental) repair takes this history explicitly into account. Technically, our algorithms rely on an existing model generation algorithm for graph conditions implemented in AutoGraph. Moreover, the delta-based approach uses the new concept of satisfaction (ST) trees for encoding if and how a graph satisfies a graph condition. We then demonstrate how to manipulate these STs incrementally with respect to a graph update.}, language = {en} } @book{Weber2023, author = {Weber, Benedikt}, title = {Human pose estimation for decubitus prophylaxis}, number = {153}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-551-4}, issn = {1613-5652}, doi = {10.25932/publishup-56719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567196}, publisher = {Universit{\"a}t Potsdam}, pages = {73}, year = {2023}, abstract = {Decubitus is one of the most relevant diseases in nursing and the most expensive to treat. It is caused by sustained pressure on tissue, so it particularly affects bed-bound patients. This work lays a foundation for pressure mattress-based decubitus prophylaxis by implementing a solution to the single-frame 2D Human Pose Estimation problem. For this, methods of Deep Learning are employed. Two approaches are examined, a coarse-to-fine Convolutional Neural Network for direct regression of joint coordinates and a U-Net for the derivation of probability distribution heatmaps. We conclude that training our models on a combined dataset of the publicly available Bodies at Rest and SLP data yields the best results. Furthermore, various preprocessing techniques are investigated, and a hyperparameter optimization is performed to discover an improved model architecture. Another finding indicates that the heatmap-based approach outperforms direct regression. This model achieves a mean per-joint position error of 9.11 cm for the Bodies at Rest data and 7.43 cm for the SLP data. We find that it generalizes well on data from mattresses other than those seen during training but has difficulties detecting the arms correctly. Additionally, we give a brief overview of the medical data annotation tool annoto we developed in the bachelor project and furthermore conclude that the Scrum framework and agile practices enhanced our development workflow.}, language = {en} } @book{OPUS4-5053, title = {Proceedings of the 5th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-129-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51472}, publisher = {Universit{\"a}t Potsdam}, pages = {II, 228}, year = {2011}, language = {en} } @book{OPUS4-7230, title = {Proceedings of the 8th Ph.D. retreat of the HPI research school on service-oriented systems engineering}, number = {95}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-320-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72302}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 223}, year = {2015}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the Research Scholl, this technical report covers a wide range of research topics. These include but are not limited to: Self-Adaptive Service-Oriented Systems, Operating System Support for Service-Oriented Systems, Architecture and Modeling of Service-Oriented Systems, Adaptive Process Management, Services Composition and Workflow Planning, Security Engineering of Service-Based IT Systems, Quantitative Analysis and Optimization of Service-Oriented Systems, Service-Oriented Systems in 3D Computer Graphics sowie Service-Oriented Geoinformatics.}, language = {en} } @book{OPUS4-6986, title = {HPI Future SOC Lab}, editor = {Meinel, Christoph and Polze, Andreas and Oswald, Gerhard and Strotmann, Rolf and Seibold, Ulrich and Schulzki, Bernard}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-276-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68991}, publisher = {Universit{\"a}t Potsdam}, pages = {ii, 118}, year = {2013}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso-Plattner-Institut (HPI) and industrial partners. Its mission is to enable and promote exchange and interaction between the research community and the industrial partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard- and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2012. Selected projects have presented their results on June 18th and November 26th 2012 at the Future SOC Lab Day events.}, language = {en} } @book{AlnemrPolyvyanyyAbuJarouretal.2010, author = {Alnemr, Rehab and Polyvyanyy, Artem and AbuJarour, Mohammed and Appeltauer, Malte and Hildebrandt, Dieter and Thomas, Ivonne and Overdick, Hagen and Sch{\"o}bel, Michael and Uflacker, Matthias and Kluth, Stephan and Menzel, Michael and Schmidt, Alexander and Hagedorn, Benjamin and Pascalau, Emilian and Perscheid, Michael and Vogel, Thomas and Hentschel, Uwe and Feinbube, Frank and Kowark, Thomas and Tr{\"u}mper, Jonas and Vogel, Tobias and Becker, Basil}, title = {Proceedings of the 4th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-036-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-40838}, publisher = {Universit{\"a}t Potsdam}, pages = {Getr. Z{\"a}hlung}, year = {2010}, language = {en} } @book{MeinelPlattnerDoellneretal.2014, author = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick}, title = {Proceedings of the 7th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-273-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63490}, publisher = {Universit{\"a}t Potsdam}, pages = {ii, 218}, year = {2014}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the Research Scholl, this technical report covers a wide range of research topics. These include but are not limited to: Self-Adaptive Service-Oriented Systems, Operating System Support for Service-Oriented Systems, Architecture and Modeling of Service-Oriented Systems, Adaptive Process Management, Services Composition and Workflow Planning, Security Engineering of Service-Based IT Systems, Quantitative Analysis and Optimization of Service-Oriented Systems, Service-Oriented Systems in 3D Computer Graphics sowie Service-Oriented Geoinformatics.}, language = {en} } @book{OPUS4-6297, title = {HPI Future SOC Lab}, editor = {Meinel, Christoph and Polze, Andreas and Oswald, Gerhard and Strotmann, Rolf and Seibold, Ulrich and D'Errico, Doc}, isbn = {978-3-86956-230-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64004}, publisher = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Together with industrial partners Hasso-Plattner-Institut (HPI) is currently establishing a "HPI Future SOC Lab," which will provide a complete infrastructure for research on on-demand systems. The lab utilizes the latest, multi/many-core hardware and its practical implementation and testing as well as further development. The necessary components for such a highly ambitious project are provided by renowned companies: Fujitsu and Hewlett Packard provide their latest 4 and 8-way servers with 1-2 TB RAM, SAP will make available its latest Business byDesign (ByD) system in its most complete version. EMC² provides high performance storage systems and VMware offers virtualization solutions. The lab will operate on the basis of real data from large enterprises. The HPI Future SOC Lab, which will be open for use by interested researchers also from other universities, will provide an opportunity to study real-life complex systems and follow new ideas all the way to their practical implementation and testing. This technical report presents results of research projects executed in 2011. Selected projects have presented their results on June 15th and October 26th 2011 at the Future SOC Lab Day events.}, language = {en} } @book{OPUS4-8334, title = {Proceedings of the 9th Ph.D. retreat of the HPI Research School on service-oriented systems engineering}, number = {100}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-345-9}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83347}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 250}, year = {2015}, abstract = {Design and implementation of service-oriented architectures impose numerous research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Service-oriented Systems Engineering represents a symbiosis of best practices in object orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. Service-oriented Systems Engineering denotes a current research topic in the field of IT-Systems Engineering with high potential in academic research and industrial application. The annual Ph.D. Retreat of the Research School provides all members the opportunity to present the current state of their research and to give an outline of prospective Ph.D. projects. Due to the interdisciplinary structure of the Research School, this technical report covers a wide range of research topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} } @book{MeinelWillemsStaubitzetal.2022, author = {Meinel, Christoph and Willems, Christian and Staubitz, Thomas and Sauer, Dominic and Hagedorn, Christiane}, title = {openHPI}, number = {148}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-544-6}, issn = {1613-5652}, doi = {10.25932/publishup-56020}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560208}, publisher = {Universit{\"a}t Potsdam}, pages = {125}, year = {2022}, abstract = {On the occasion of the 10th openHPI anniversary, this technical report provides information about the HPI MOOC platform, including its core features, technology, and architecture. In an introduction, the platform family with all partner platforms is presented; these now amount to nine platforms, including openHPI. This section introduces openHPI as an advisor and research partner in various projects. In the second chapter, the functionalities and common course formats of the platform are presented. The functionalities are divided into learner and admin features. The learner features section provides detailed information about performance records, courses, and the learning materials of which a course is composed: videos, texts, and quizzes. In addition, the learning materials can be enriched by adding external exercise tools that communicate with the HPI MOOC platform via the Learning Tools Interoperability (LTI) standard. Furthermore, the concept of peer assessments completed the possible learning materials. The section then proceeds with further information on the discussion forum, a fundamental concept of MOOCs compared to traditional e-learning offers. The section is concluded with a description of the quiz recap, learning objectives, mobile applications, gameful learning, and the help desk. The next part of this chapter deals with the admin features. The described functionality is restricted to describing the news and announcements, dashboards and statistics, reporting capabilities, research options with A/B testing, the course feed, and the TransPipe tool to support the process of creating automated or manual subtitles. The platform supports a large variety of additional features, but a detailed description of these features goes beyond the scope of this report. The chapter then elaborates on common course formats and openHPI teaching activities at the HPI. The chapter concludes with some best practices for course design and delivery. The third chapter provides insights into the technology and architecture behind openHPI. A special characteristic of the openHPI project is the conscious decision to operate the complete application from bare metal to platform development. Hence, the chapter starts with a section about the openHPI Cloud, including detailed information about the data center and devices, the used cloud software OpenStack and Ceph, as well as the openHPI Cloud Service provided for the HPI. Afterward, a section on the application technology stack and development tooling describes the application infrastructure components, the used automation, the deployment pipeline, and the tools used for monitoring and alerting. The chapter is concluded with detailed information about the technology stack and concrete platform implementation details. The section describes the service-oriented Ruby on Rails application, inter-service communication, and public APIs. It also provides more information on the design system and components used in the application. The section concludes with a discussion of the original microservice architecture, where we share our insights and reasoning for migrating back to a monolithic application. The last chapter provides a summary and an outlook on the future of digital education.}, language = {en} } @book{NeuhausPolzeChowdhuryy2011, author = {Neuhaus, Christian and Polze, Andreas and Chowdhuryy, Mohammad M. R.}, title = {Survey on healthcare IT systems : standards, regulations and security}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-128-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51463}, publisher = {Universit{\"a}t Potsdam}, pages = {53}, year = {2011}, abstract = {IT systems for healthcare are a complex and exciting field. One the one hand, there is a vast number of improvements and work alleviations that computers can bring to everyday healthcare. Some ways of treatment, diagnoses and organisational tasks were even made possible by computer usage in the first place. On the other hand, there are many factors that encumber computer usage and make development of IT systems for healthcare a challenging, sometimes even frustrating task. These factors are not solely technology-related, but just as well social or economical conditions. This report describes some of the idiosyncrasies of IT systems in the healthcare domain, with a special focus on legal regulations, standards and security.}, language = {en} } @book{AbedjanNaumann2011, author = {Abedjan, Ziawasch and Naumann, Felix}, title = {Advancing the discovery of unique column combinations}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-148-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53564}, publisher = {Universit{\"a}t Potsdam}, pages = {25}, year = {2011}, abstract = {Unique column combinations of a relational database table are sets of columns that contain only unique values. Discovering such combinations is a fundamental research problem and has many different data management and knowledge discovery applications. Existing discovery algorithms are either brute force or have a high memory load and can thus be applied only to small datasets or samples. In this paper, the wellknown GORDIAN algorithm and "Apriori-based" algorithms are compared and analyzed for further optimization. We greatly improve the Apriori algorithms through efficient candidate generation and statistics-based pruning methods. A hybrid solution HCAGORDIAN combines the advantages of GORDIAN and our new algorithm HCA, and it significantly outperforms all previous work in many situations.}, language = {en} } @book{MeyerWeske2014, author = {Meyer, Andreas and Weske, Mathias}, title = {Weak conformance between process models and synchronized object life cycles}, number = {91}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-303-9}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71722}, publisher = {Universit{\"a}t Potsdam}, pages = {31}, year = {2014}, abstract = {Process models specify behavioral execution constraints between activities as well as between activities and data objects. A data object is characterized by its states and state transitions represented as object life cycle. For process execution, all behavioral execution constraints must be correct. Correctness can be verified via soundness checking which currently only considers control flow information. For data correctness, conformance between a process model and its object life cycles is checked. Current approaches abstract from dependencies between multiple data objects and require fully specified process models although, in real-world process repositories, often underspecified models are found. Coping with these issues, we introduce the concept of synchronized object life cycles and we define a mapping of data constraints of a process model to Petri nets extending an existing mapping. Further, we apply the notion of weak conformance to process models to tell whether each time an activity needs to access a data object in a particular state, it is guaranteed that the data object is in or can reach the expected state. Then, we introduce an algorithm for an integrated verification of control flow correctness and weak data conformance using soundness checking.}, language = {en} } @book{FelgentreffBorningHirschfeld2013, author = {Felgentreff, Tim and Borning, Alan and Hirschfeld, Robert}, title = {Babelsberg : specifying and solving constraints on object behavior}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-265-0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67296}, publisher = {Universit{\"a}t Potsdam}, pages = {53}, year = {2013}, abstract = {Constraints allow developers to specify desired properties of systems in a number of domains, and have those properties be maintained automatically. This results in compact, declarative code, avoiding scattered code to check and imperatively re-satisfy invariants. Despite these advantages, constraint programming is not yet widespread, with standard imperative programming still the norm. There is a long history of research on integrating constraint programming with the imperative paradigm. However, this integration typically does not unify the constructs for encapsulation and abstraction from both paradigms. This impedes re-use of modules, as client code written in one paradigm can only use modules written to support that paradigm. Modules require redundant definitions if they are to be used in both paradigms. We present a language - Babelsberg - that unifies the constructs for en- capsulation and abstraction by using only object-oriented method definitions for both declarative and imperative code. Our prototype - Babelsberg/R - is an extension to Ruby, and continues to support Ruby's object-oriented se- mantics. It allows programmers to add constraints to existing Ruby programs in incremental steps by placing them on the results of normal object-oriented message sends. It is implemented by modifying a state-of-the-art Ruby virtual machine. The performance of standard object-oriented code without con- straints is only modestly impacted, with typically less than 10\% overhead compared with the unmodified virtual machine. Furthermore, our architec- ture for adding multiple constraint solvers allows Babelsberg to deal with constraints in a variety of domains. We argue that our approach provides a useful step toward making con- straint solving a generic tool for object-oriented programmers. We also provide example applications, written in our Ruby-based implementation, which use constraints in a variety of application domains, including interactive graphics, circuit simulations, data streaming with both hard and soft constraints on performance, and configuration file Management.}, language = {en} } @book{GieseBecker2013, author = {Giese, Holger and Becker, Basil}, title = {Modeling and verifying dynamic evolving service-oriented architectures}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-246-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65112}, publisher = {Universit{\"a}t Potsdam}, pages = {97}, year = {2013}, abstract = {The service-oriented architecture supports the dynamic assembly and runtime reconfiguration of complex open IT landscapes by means of runtime binding of service contracts, launching of new components and termination of outdated ones. Furthermore, the evolution of these IT landscapes is not restricted to exchanging components with other ones using the same service contracts, as new services contracts can be added as well. However, current approaches for modeling and verification of service-oriented architectures do not support these important capabilities to their full extend.In this report we present an extension of the current OMG proposal for service modeling with UML - SoaML - which overcomes these limitations. It permits modeling services and their service contracts at different levels of abstraction, provides a formal semantics for all modeling concepts, and enables verifying critical properties. Our compositional and incremental verification approach allows for complex properties including communication parameters and time and covers besides the dynamic binding of service contracts and the replacement of components also the evolution of the systems by means of new service contracts. The modeling as well as verification capabilities of the presented approach are demonstrated by means of a supply chain example and the verification results of a first prototype are shown.}, language = {en} } @book{RoggeSoltiMansvanderAalstetal.2013, author = {Rogge-Solti, Andreas and Mans, Ronny S. and van der Aalst, Wil M. P. and Weske, Mathias}, title = {Repairing event logs using stochastic process models}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-258-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66797}, publisher = {Universit{\"a}t Potsdam}, pages = {19}, year = {2013}, abstract = {Companies strive to improve their business processes in order to remain competitive. Process mining aims to infer meaningful insights from process-related data and attracted the attention of practitioners, tool-vendors, and researchers in recent years. Traditionally, event logs are assumed to describe the as-is situation. But this is not necessarily the case in environments where logging may be compromised due to manual logging. For example, hospital staff may need to manually enter information regarding the patient's treatment. As a result, events or timestamps may be missing or incorrect. In this paper, we make use of process knowledge captured in process models, and provide a method to repair missing events in the logs. This way, we facilitate analysis of incomplete logs. We realize the repair by combining stochastic Petri nets, alignments, and Bayesian networks. We evaluate the results using both synthetic data and real event data from a Dutch hospital.}, language = {en} } @book{OPUS4-6813, title = {Cloud security mechanisms}, number = {87}, editor = {Neuhaus, Christian and Polze, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-281-0}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68168}, publisher = {Universit{\"a}t Potsdam}, pages = {78}, year = {2014}, abstract = {Cloud computing has brought great benefits in cost and flexibility for provisioning services. The greatest challenge of cloud computing remains however the question of security. The current standard tools in access control mechanisms and cryptography can only partly solve the security challenges of cloud infrastructures. In the recent years of research in security and cryptography, novel mechanisms, protocols and algorithms have emerged that offer new ways to create secure services atop cloud infrastructures. This report provides introductions to a selection of security mechanisms that were part of the "Cloud Security Mechanisms" seminar in summer term 2013 at HPI.}, language = {en} } @book{PapeTrefferHirschfeldetal.2013, author = {Pape, Tobias and Treffer, Arian and Hirschfeld, Robert and Haupt, Michael}, title = {Extending a Java Virtual Machine to Dynamic Object-oriented Languages}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-266-7}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67438}, publisher = {Universit{\"a}t Potsdam}, pages = {163}, year = {2013}, abstract = {There are two common approaches to implement a virtual machine (VM) for a dynamic object-oriented language. On the one hand, it can be implemented in a C-like language for best performance and maximum control over the resulting executable. On the other hand, it can be implemented in a language such as Java that allows for higher-level abstractions. These abstractions, such as proper object-oriented modularization, automatic memory management, or interfaces, are missing in C-like languages but they can simplify the implementation of prevalent but complex concepts in VMs, such as garbage collectors (GCs) or just-in-time compilers (JITs). Yet, the implementation of a dynamic object-oriented language in Java eventually results in two VMs on top of each other (double stack), which impedes performance. For statically typed languages, the Maxine VM solves this problem; it is written in Java but can be executed without a Java virtual machine (JVM). However, it is currently not possible to execute dynamic object-oriented languages in Maxine. This work presents an approach to bringing object models and execution models of dynamic object-oriented languages to the Maxine VM and the application of this approach to Squeak/Smalltalk. The representation of objects in and the execution of dynamic object-oriented languages pose certain challenges to the Maxine VM that lacks certain variation points necessary to enable an effortless and straightforward implementation of dynamic object-oriented languages' execution models. The implementation of Squeak/Smalltalk in Maxine as a feasibility study is to unveil such missing variation points.}, language = {en} } @book{SchwalbKruegerPlattner2013, author = {Schwalb, David and Kr{\"u}ger, Jens and Plattner, Hasso}, title = {Cache conscious column organization in in-memory column stores}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-228-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63890}, publisher = {Universit{\"a}t Potsdam}, pages = {v, 84}, year = {2013}, abstract = {Cost models are an essential part of database systems, as they are the basis of query performance optimization. Based on predictions made by cost models, the fastest query execution plan can be chosen and executed or algorithms can be tuned and optimised. In-memory databases shifts the focus from disk to main memory accesses and CPU costs, compared to disk based systems where input and output costs dominate the overall costs and other processing costs are often neglected. However, modelling memory accesses is fundamentally different and common models do not apply anymore. This work presents a detailed parameter evaluation for the plan operators scan with equality selection, scan with range selection, positional lookup and insert in in-memory column stores. Based on this evaluation, a cost model based on cache misses for estimating the runtime of the considered plan operators using different data structures is developed. Considered are uncompressed columns, bit compressed and dictionary encoded columns with sorted and unsorted dictionaries. Furthermore, tree indices on the columns and dictionaries are discussed. Finally, partitioned columns consisting of one partition with a sorted and one with an unsorted dictionary are investigated. New values are inserted in the unsorted dictionary partition and moved periodically by a merge process to the sorted partition. An efficient attribute merge algorithm is described, supporting the update performance required to run enterprise applications on read-optimised databases. Further, a memory traffic based cost model for the merge process is provided.}, language = {en} } @book{VogelGiese2013, author = {Vogel, Thomas and Giese, Holger}, title = {Model-driven engineering of adaptation engines for self-adaptive software : executable runtime megamodels}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-227-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63825}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 59}, year = {2013}, abstract = {The development of self-adaptive software requires the engineering of an adaptation engine that controls and adapts the underlying adaptable software by means of feedback loops. The adaptation engine often describes the adaptation by using runtime models representing relevant aspects of the adaptable software and particular activities such as analysis and planning that operate on these runtime models. To systematically address the interplay between runtime models and adaptation activities in adaptation engines, runtime megamodels have been proposed for self-adaptive software. A runtime megamodel is a specific runtime model whose elements are runtime models and adaptation activities. Thus, a megamodel captures the interplay between multiple models and between models and activities as well as the activation of the activities. In this article, we go one step further and present a modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that considerably eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular for feedback loops. Megamodels are kept explicit and alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops, their runtime models, and adaptation activities explicit at a higher level of abstraction. Moreover, it enables complex solutions where multiple feedback loops interact or even operate on top of each other. Finally, it leverages the co-existence of self-adaptation and off-line adaptation for evolution.}, language = {en} } @book{BeyhlBlouinGieseetal.2016, author = {Beyhl, Thomas and Blouin, Dominique and Giese, Holger and Lambers, Leen}, title = {On the operationalization of graph queries with generalized discrimination networks}, number = {106}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-372-5}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96279}, publisher = {Universit{\"a}t Potsdam}, pages = {33}, year = {2016}, abstract = {Graph queries have lately gained increased interest due to application areas such as social networks, biological networks, or model queries. For the relational database case the relational algebra and generalized discrimination networks have been studied to find appropriate decompositions into subqueries and ordering of these subqueries for query evaluation or incremental updates of query results. For graph database queries however there is no formal underpinning yet that allows us to find such suitable operationalizations. Consequently, we suggest a simple operational concept for the decomposition of arbitrary complex queries into simpler subqueries and the ordering of these subqueries in form of generalized discrimination networks for graph queries inspired by the relational case. The approach employs graph transformation rules for the nodes of the network and thus we can employ the underlying theory. We further show that the proposed generalized discrimination networks have the same expressive power as nested graph conditions.}, language = {en} } @book{BarkowskyGiese2023, author = {Barkowsky, Matthias and Giese, Holger}, title = {Triple graph grammars for multi-version models}, number = {155}, isbn = {978-3-86956-556-9}, issn = {1613-5652}, doi = {10.25932/publishup-57399}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573994}, publisher = {Universit{\"a}t Potsdam}, pages = {28 -- 28}, year = {2023}, abstract = {Like conventional software projects, projects in model-driven software engineering require adequate management of multiple versions of development artifacts, importantly allowing living with temporary inconsistencies. In the case of model-driven software engineering, employed versioning approaches also have to handle situations where different artifacts, that is, different models, are linked via automatic model transformations. In this report, we propose a technique for jointly handling the transformation of multiple versions of a source model into corresponding versions of a target model, which enables the use of a more compact representation that may afford improved execution time of both the transformation and further analysis operations. Our approach is based on the well-known formalism of triple graph grammars and a previously introduced encoding of model version histories called multi-version models. In addition to showing the correctness of our approach with respect to the standard semantics of triple graph grammars, we conduct an empirical evaluation that demonstrates the potential benefit regarding execution time performance.}, language = {en} } @book{GerkenUebernickeldePaula2022, author = {Gerken, Stefanie and Uebernickel, Falk and de Paula, Danielly}, title = {Design Thinking: a Global Study on Implementation Practices in Organizations}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-525-5}, doi = {10.25932/publishup-53466}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-534668}, publisher = {Universit{\"a}t Potsdam}, pages = {230}, year = {2022}, abstract = {These days design thinking is no longer a "new approach". Among practitioners, as well as academics, interest in the topic has gathered pace over the last two decades. However, opinions are divided over the longevity of the phenomenon: whether design thinking is merely "old wine in new bottles," a passing trend, or still evolving as it is being spread to an increasing number of organizations and industries. Despite its growing relevance and the diffusion of design thinking, knowledge on the actual status quo in organizations remains scarce. With a new study, the research team of Prof. Uebernickel and Stefanie Gerken investigates temporal developments and changes in design thinking practices in organizations over the past six years comparing the results of the 2015 "Parts without a whole" study with current practices and future developments. Companies of all sizes and from different parts of the world participated in the survey. The findings from qualitative interviews with experts, i.e., people who have years of knowledge with design thinking, were cross-checked with the results from an exploratory analysis of the survey data. This analysis uncovers significant variances and similarities in how design thinking is interpreted and applied in businesses.}, language = {en} } @book{FlottererMaximovaSchneideretal.2022, author = {Flotterer, Boris and Maximova, Maria and Schneider, Sven and Dyck, Johannes and Z{\"o}llner, Christian and Giese, Holger and H{\´e}ly, Christelle and Gaucherel, C{\´e}dric}, title = {Modeling and Formal Analysis of Meta-Ecosystems with Dynamic Structure using Graph Transformation}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, number = {147}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-533-0}, issn = {1613-5652}, doi = {10.25932/publishup-54764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-547643}, publisher = {Universit{\"a}t Potsdam}, pages = {47}, year = {2022}, abstract = {The dynamics of ecosystems is of crucial importance. Various model-based approaches exist to understand and analyze their internal effects. In this paper, we model the space structure dynamics and ecological dynamics of meta-ecosystems using the formal technique of Graph Transformation (short GT). We build GT models to describe how a meta-ecosystem (modeled as a graph) can evolve over time (modeled by GT rules) and to analyze these GT models with respect to qualitative properties such as the existence of structural stabilities. As a case study, we build three GT models describing the space structure dynamics and ecological dynamics of three different savanna meta-ecosystems. The first GT model considers a savanna meta-ecosystem that is limited in space to two ecosystem patches, whereas the other two GT models consider two savanna meta-ecosystems that are unlimited in the number of ecosystem patches and only differ in one GT rule describing how the space structure of the meta-ecosystem grows. In the first two GT models, the space structure dynamics and ecological dynamics of the meta-ecosystem shows two main structural stabilities: the first one based on grassland-savanna-woodland transitions and the second one based on grassland-desert transitions. The transition between these two structural stabilities is driven by high-intensity fires affecting the tree components. In the third GT model, the GT rule for savanna regeneration induces desertification and therefore a collapse of the meta-ecosystem. We believe that GT models provide a complementary avenue to that of existing approaches to rigorously study ecological phenomena.}, language = {en} } @book{OPUS4-10026, title = {Proceedings of the 10th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, number = {111}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias and M{\"u}ller, Emmanuel}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-390-9}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100260}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 255}, year = {2016}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} } @book{MeinelWillems2013, author = {Meinel, Christoph and Willems, Christian}, title = {openHPI : the MOOC offer at Hasso Plattner Institute}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-264-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67176}, publisher = {Universit{\"a}t Potsdam}, pages = {21}, year = {2013}, abstract = {The new interactive online educational platform openHPI, (https://openHPI.de) from Hasso Plattner Institute (HPI), offers freely accessible courses at no charge for all who are interested in subjects in the field of information technology and computer science. Since 2011, "Massive Open Online Courses," called MOOCs for short, have been offered, first at Stanford University and then later at other U.S. elite universities. Following suit, openHPI provides instructional videos on the Internet and further reading material, combined with learning-supportive self-tests, homework and a social discussion forum. Education is further stimulated by the support of a virtual learning community. In contrast to "traditional" lecture platforms, such as the tele-TASK portal (http://www.tele-task.de) where multimedia recorded lectures are available on demand, openHPI offers didactic online courses. The courses have a fixed start date and offer a balanced schedule of six consecutive weeks presented in multimedia and, whenever possible, interactive learning material. Each week, one chapter of the course subject is treated. In addition, a series of learning videos, texts, self-tests and homework exercises are provided to course participants at the beginning of the week. The course offering is combined with a social discussion platform where participants have the opportunity to enter into an exchange with course instructors and fellow participants. Here, for example, they can get answers to questions and discuss the topics in depth. The participants naturally decide themselves about the type and range of their learning activities. They can make personal contributions to the course, for example, in blog posts or tweets, which they can refer to in the forum. In turn, other participants have the chance to comment on, discuss or expand on what has been said. In this way, the learners become the teachers and the subject matter offered to a virtual community is linked to a social learning network.}, language = {en} } @book{RanaMohapatraSidorovaetal.2022, author = {Rana, Kaushik and Mohapatra, Durga Prasad and Sidorova, Julia and Lundberg, Lars and Sk{\"o}ld, Lars and Lopes Grim, Lu{\´i}s Fernando and Sampaio Gradvohl, Andr{\´e} Leon and Cremerius, Jonas and Siegert, Simon and Weltzien, Anton von and Baldi, Annika and Klessascheck, Finn and Kalancha, Svitlana and Lichtenstein, Tom and Shaabani, Nuhad and Meinel, Christoph and Friedrich, Tobias and Lenzner, Pascal and Schumann, David and Wiese, Ingmar and Sarna, Nicole and Wiese, Lena and Tashkandi, Araek Sami and van der Walt, Est{\´e}e and Eloff, Jan H. P. and Schmidt, Christopher and H{\"u}gle, Johannes and Horschig, Siegfried and Uflacker, Matthias and Najafi, Pejman and Sapegin, Andrey and Cheng, Feng and Stojanovic, Dragan and Stojnev Ilić, Aleksandra and Djordjevic, Igor and Stojanovic, Natalija and Predic, Bratislav and Gonz{\´a}lez-Jim{\´e}nez, Mario and de Lara, Juan and Mischkewitz, Sven and Kainz, Bernhard and van Hoorn, Andr{\´e} and Ferme, Vincenzo and Schulz, Henning and Knigge, Marlene and Hecht, Sonja and Prifti, Loina and Krcmar, Helmut and Fabian, Benjamin and Ermakova, Tatiana and Kelkel, Stefan and Baumann, Annika and Morgenstern, Laura and Plauth, Max and Eberhard, Felix and Wolff, Felix and Polze, Andreas and Cech, Tim and Danz, Noel and Noack, Nele Sina and Pirl, Lukas and Beilharz, Jossekin Jakob and De Oliveira, Roberto C. L. and Soares, F{\´a}bio Mendes and Juiz, Carlos and Bermejo, Belen and M{\"u}hle, Alexander and Gr{\"u}ner, Andreas and Saxena, Vageesh and Gayvoronskaya, Tatiana and Weyand, Christopher and Krause, Mirko and Frank, Markus and Bischoff, Sebastian and Behrens, Freya and R{\"u}ckin, Julius and Ziegler, Adrian and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Sz{\´a}rnyas, G{\´a}bor and Marton, J{\´o}zsef and Maginecz, J{\´a}nos and Varr{\´o}, D{\´a}niel and Antal, J{\´a}nos Benjamin}, title = {HPI Future SOC Lab - Proceedings 2018}, number = {151}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-547-7}, issn = {1613-5652}, doi = {10.25932/publishup-56371}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563712}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 277}, year = {2022}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events.}, language = {en} } @book{ZhangPlauthEberhardtetal.2020, author = {Zhang, Shuhao and Plauth, Max and Eberhardt, Felix and Polze, Andreas and Lehmann, Jens and Sejdiu, Gezim and Jabeen, Hajira and Servadei, Lorenzo and M{\"o}stl, Christian and B{\"a}r, Florian and Netzeband, Andr{\´e} and Schmidt, Rainer and Knigge, Marlene and Hecht, Sonja and Prifti, Loina and Krcmar, Helmut and Sapegin, Andrey and Jaeger, David and Cheng, Feng and Meinel, Christoph and Friedrich, Tobias and Rothenberger, Ralf and Sutton, Andrew M. and Sidorova, Julia A. and Lundberg, Lars and Rosander, Oliver and Sk{\"o}ld, Lars and Di Varano, Igor and van der Walt, Est{\´e}e and Eloff, Jan H. P. and Fabian, Benjamin and Baumann, Annika and Ermakova, Tatiana and Kelkel, Stefan and Choudhary, Yash and Cooray, Thilini and Rodr{\´i}guez, Jorge and Medina-P{\´e}rez, Miguel Angel and Trejo, Luis A. and Barrera-Animas, Ari Yair and Monroy-Borja, Ra{\´u}l and L{\´o}pez-Cuevas, Armando and Ram{\´i}rez-M{\´a}rquez, Jos{\´e} Emmanuel and Grohmann, Maria and Niederleithinger, Ernst and Podapati, Sasidhar and Schmidt, Christopher and Huegle, Johannes and de Oliveira, Roberto C. L. and Soares, F{\´a}bio Mendes and van Hoorn, Andr{\´e} and Neumer, Tamas and Willnecker, Felix and Wilhelm, Mathias and Kuster, Bernhard}, title = {HPI Future SOC Lab - Proceedings 2017}, number = {130}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-475-3}, issn = {1613-5652}, doi = {10.25932/publishup-43310}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433100}, publisher = {Universit{\"a}t Potsdam}, pages = {ix, 235}, year = {2020}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2017. Selected projects have presented their results on April 25th and November 15th 2017 at the Future SOC Lab Day events.}, language = {en} } @book{MeinelDoellnerWeskeetal.2021, author = {Meinel, Christoph and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias and B{\"o}ttinger, Erwin and Lippert, Christoph and D{\"o}rr, Christian and Lehmann, Anja and Renard, Bernhard and Rabl, Tilmann and Uebernickel, Falk and Arnrich, Bert and H{\"o}lzle, Katharina}, title = {Proceedings of the HPI Research School on Service-oriented Systems Engineering 2020 Fall Retreat}, number = {138}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-513-2}, issn = {1613-5652}, doi = {10.25932/publishup-50413}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-504132}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 144}, year = {2021}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} } @book{AdrianoBleifussChengetal.2019, author = {Adriano, Christian and Bleifuß, Tobias and Cheng, Lung-Pan and Diba, Kiarash and Fricke, Andreas and Grapentin, Andreas and Jiang, Lan and Kovacs, Robert and Krejca, Martin Stefan and Mandal, Sankalita and Marwecki, Sebastian and Matthies, Christoph and Mattis, Toni and Niephaus, Fabio and Pirl, Lukas and Quinzan, Francesco and Ramson, Stefan and Rezaei, Mina and Risch, Julian and Rothenberger, Ralf and Roumen, Thijs and Stojanovic, Vladeta and Wolf, Johannes}, title = {Technical report}, number = {129}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias and B{\"o}ttinger, Erwin and Lippert, Christoph}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-465-4}, issn = {1613-5652}, doi = {10.25932/publishup-42753}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427535}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 267}, year = {2019}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} } @book{JuizBermejoCalleetal.2024, author = {Juiz, Carlos and Bermejo, Belen and Calle, Alejandro and Sidorova, Julia and Lundberg, Lars and Weidmann, Vera and Lowitzki, Leon and Mirtschin, Marvin and Hoorn, Andr{\´e} van and Frank, Markus and Schulz, Henning and Stojanovic, Dragan and Stojanovic, Natalija and Stojnev Ilic, Aleksandra and Friedrich, Tobias and Lenzner, Pascal and Weyand, Christopher and Wagner, Markus and Plauth, Max and Polze, Andreas and Nowicki, Marek and Seth, Sugandh and Kaur Chahal, Kuljit and Singh, Gurwinder and Speth, Sandro and Janes, Andrea and Camilli, Matteo and Ziegler, Erik and Schmidberger, Marcel and P{\"o}rschke, Mats and Bartz, Christian and Lorenz, Martin and Meinel, Christoph and Beilich, Robert and Bertazioli, Dario and Carlomagno, Cristiano and Bedoni, Marzia and Messina, Vincenzina}, title = {HPI Future SOC Lab}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, number = {159}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen and Sommer, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-565-1}, issn = {1613-5652}, doi = {10.25932/publishup-59801}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-598014}, publisher = {Universit{\"a}t Potsdam}, pages = {ix, 142}, year = {2024}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2020. Selected projects have presented their results on April 21st and November 10th 2020 at the Future SOC Lab Day events.}, language = {en} } @book{GarusSawahnWankeetal.2023, author = {Garus, Marcel and Sawahn, Rohan and Wanke, Jonas and Tiedt, Clemens and Granzow, Clara and Kuffner, Tim and Rosenbaum, Jannis and Hagemann, Linus and Wollnik, Tom and Woth, Lorenz and Auringer, Felix and Kantusch, Tobias and Roth, Felix and Hanff, Konrad and Schilli, Niklas and Seibold, Leonard and Lindner, Marc Fabian and Raschack, Selina}, title = {Operating systems II - student projects}, number = {142}, editor = {Grapentin, Andreas and Tiedt, Clemens and Polze, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-524-8}, issn = {1613-5652}, doi = {10.25932/publishup-52636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526363}, publisher = {Universit{\"a}t Potsdam}, pages = {ix, 114}, year = {2023}, abstract = {This technical report presents the results of student projects which were prepared during the lecture "Operating Systems II" offered by the "Operating Systems and Middleware" group at HPI in the Summer term of 2020. The lecture covered ad- vanced aspects of operating system implementation and architecture on topics such as Virtualization, File Systems and Input/Output Systems. In addition to attending the lecture, the participating students were encouraged to gather practical experience by completing a project on a closely related topic over the course of the semester. The results of 10 selected exceptional projects are covered in this report. The students have completed hands-on projects on the topics of Operating System Design Concepts and Implementation, Hardware/Software Co-Design, Reverse Engineering, Quantum Computing, Static Source-Code Analysis, Operating Systems History, Application Binary Formats and more. It should be recognized that over the course of the semester all of these projects have achieved outstanding results which went far beyond the scope and the expec- tations of the lecture, and we would like to thank all participating students for their commitment and their effort in completing their respective projects, as well as their work on compiling this report.}, language = {en} } @book{MeinelGalbasHageboelling2023, author = {Meinel, Christoph and Galbas, Michael and Hageb{\"o}lling, David}, title = {Digital sovereignty: insights from Germany's education sector}, number = {157}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-561-3}, issn = {1613-5652}, doi = {10.25932/publishup-59772}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597723}, publisher = {Universit{\"a}t Potsdam}, pages = {1 -- 27}, year = {2023}, abstract = {Digital technology offers significant political, economic, and societal opportunities. At the same time, the notion of digital sovereignty has become a leitmotif in German discourse: the state's capacity to assume its responsibilities and safeguard society's - and individuals' - ability to shape the digital transformation in a self-determined way. The education sector is exemplary for the challenge faced by Germany, and indeed Europe, of harnessing the benefits of digital technology while navigating concerns around sovereignty. It encompasses education as a core public good, a rapidly growing field of business, and growing pools of highly sensitive personal data. The report describes pathways to mitigating the tension between digitalization and sovereignty at three different levels - state, economy, and individual - through the lens of concrete technical projects in the education sector: the HPI Schul-Cloud (state sovereignty), the MERLOT data spaces (economic sovereignty), and the openHPI platform (individual sovereignty).}, language = {en} }