@article{HurtienneSchroederSpannagel2015, author = {Hurtienne, Dominik and Schroeder, Ulrik and Spannagel, Christian}, title = {IT EnGAGES!}, series = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, volume = {2015}, journal = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, number = {9}, editor = {Schwill, Andreas and Schubert, Sigrid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80258}, pages = {27 -- 43}, year = {2015}, abstract = {Durch den Einsatz von Spielen und Spielelementen in Lernkontexten wird versucht, Lernende zur Besch{\"a}ftigung mit den Lerninhalten zu motivieren. Spielerische Elemente haben allerdings nicht nur positive motivationale Effekte: Sie k{\"o}nnen sich beispielsweise negativ auf die intrinsische Motivation auswirken, und auch nicht jeder Lernende spielt gerne. Um negativen Einfl{\"u}ssen von Gamification entgegenzuwirken, wurde ein Toolkit f{\"u}r adaptierbare Lernumgebungen entwickelt. Damit erzeugte Lernumgebungen erlauben es Studierenden, den Grad der Gamification selbst zu bestimmen, indem Spielelemente an- und abgeschaltet werden. Im Rahmen einer Anf{\"a}ngerprogrammiervorlesung wurden Lernspielaufgaben aus den existierenden, optionalen interaktiven eTests entwickelt und Studierenden als zus{\"a}tzliche Lerngelegenheit angeboten. Eine erste explorative Studie best{\"a}tigt die Vermutung, dass die Akzeptanz des adaptierbaren Lernspiels sehr hoch ist, es aber dennoch Studierende gibt, welche die Lernumgebung ohne Spielelemente durcharbeiten. Somit bietet adaptierbare Gamification verschiedenen Studierenden die M{\"o}glichkeit, sich zus{\"a}tzliche motivationale Anreize durch Zuschalten von Spielelementen zu verschaffen, ohne dabei zum Spielen „gen{\"o}tigt" zu werden.}, language = {de} } @article{RoderusWienkop2015, author = {Roderus, Simon and Wienkop, Uwe}, title = {Verbesserung der Bestehensquoten durch ein Peer Assessment-Pflichtpraktikum}, series = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, volume = {2015}, journal = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, number = {9}, editor = {Schwill, Andreas and Schubert, Sigrid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80260}, pages = {45 -- 60}, year = {2015}, abstract = {Peer Assessment ist eine Methode, bei der die Teilnehmer eine gestellte Aufgabe nicht nur bearbeiten und einreichen, sondern - in einer zweiten Phase - diese auch gegenseitig {\"u}berpr{\"u}fen, kommentieren und bewerten. Durch diese Methode wird, auch in sehr großen Veranstaltungen, das {\"U}ben mit individuellen Bewertungen und individuellem Feedback m{\"o}glich. Im Wintersemester 2013/14 wurde dieser Ansatz in der Erstsemesterveranstaltung Programmieren an der Technischen Hochschule N{\"u}rnberg mit 340 Studierenden als semesterbegleitendes Online-Pflichtpraktikum erprobt. Bei gleichen Leistungsanforderungen wurde bei Studierenden, die erfolgreich am Praktikum teilnahmen, eine Reduzierung der Durchfallquote um durchschnittlich 60 \% und eine Verbesserung der Durchschnittsnote um 0,6 - 0,9 Notenstufen erzielt. Zudem lernten die teilnehmenden Studierenden kontinuierlicher, bereiteten Lerninhalte besser nach und gelangten zu einer {\"u}berwiegend positiven Einsch{\"a}tzung des Praktikums und der Methode. Im E-Learning System Moodle kann Peer Assessment, mit moderatem Umsetzungs- und Betreuungsaufwand, mit der Workshop-Aktivit{\"a}t realisiert werden. Im Beitrag wird auf die Schl{\"u}sselelemente des erfolgreichen Einsatzes von Peer Assessment eingegangen.}, language = {de} } @article{LeonhardtKwiecienSchmetzetal.2015, author = {Leonhardt, Thiemo and Kwiecien, Alexandra and Schmetz, Arno and Bellgardt, Martin and Naumann, Uwe}, title = {Studienabbruchsquote dauerhaft senken}, series = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, volume = {2015}, journal = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, number = {9}, editor = {Schwill, Andreas and Schubert, Sigrid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80274}, pages = {61 -- 76}, year = {2015}, abstract = {Es wird ein umfassendes Mentoring Konzept im Studiengang Informatik an der RWTH Aachen vorgestellt, das den {\"U}bergang von der Schule zur Universit{\"a}t unterst{\"u}tzt und gleichzeitig beim Auftreten von Schwierigkeiten im Verlauf des Studiums effiziente und kompetente Beratung bietet. Das Programm erreicht durchg{\"a}ngig hohe Akzeptanzwerte bei den Studierenden trotz verpflichtender Teilnahme im ersten Semester. Die Wirksamkeit des Programms ist durch die zahlreichen einflussgebenden Variablen zwar rein quantitativ kaum messbar, die M{\"o}glichkeit auf organisatorische und fachliche Probleme eines Jahrgangs reagieren zu k{\"o}nnen sowie einen Einblick auf die Gr{\"u}nde f{\"u}r einen Studienabbruch zu bekommen, best{\"a}tigt aber die Notwendigkeit der Maßnahme.}, language = {de} } @article{JakoblewKeilWinkelnkemper2015, author = {Jakoblew, Marcel and Keil, Reinhard and Winkelnkemper, Felix}, title = {Forschendes Lernen durch Semantisches Positionieren}, series = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, volume = {2015}, journal = {HDI 2014 : Gestalten von {\"U}berg{\"a}ngen}, number = {9}, editor = {Schwill, Andreas and Schubert, Sigrid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80301}, pages = {109 -- 124}, year = {2015}, abstract = {Der Beitrag stellt das Konzept des Semantischen Positionierens als eine M{\"o}glichkeit vor, Grundformen des wissenschaftlichen Arbeitens und elementare Formen der diskursiven Auseinandersetzung zu vermitteln, ohne dass die Studierenden sich inhaltlich an der aktuellen Forschung beteiligen m{\"u}ssten. Die Umsetzung dieses Konzepts im Bachelorstudium der Informatik verdeutlicht, dass mit diesem Ansatz sowohl die Kompetenzen f{\"u}r den {\"U}bergang in den mehr forschungsgetriebenen Masterstudiengang als auch f{\"u}r die berufliche Wissensarbeit erworben werden k{\"o}nnen.}, language = {de} } @article{Curzon2015, author = {Curzon, Paul}, title = {Unplugged Computational Thinking for Fun}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82575}, pages = {15 -- 27}, year = {2015}, abstract = {Computational thinking is a fundamental skill set that is learned by studying Informatics and ICT. We argue that its core ideas can be introduced in an inspiring and integrated way to both teachers and students using fun and contextually rich cs4fn 'Computer Science for Fun' stories combined with 'unplugged' activities including games and magic tricks. We also argue that understanding people is an important part of computational thinking. Computational thinking can be fun for everyone when taught in kinaesthetic ways away from technology.}, language = {en} } @article{Kalas2015, author = {Kalas, Ivan}, title = {Programming at Pre-primary and Primary Levels}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82587}, pages = {29 -- 31}, year = {2015}, language = {en} } @article{MagenheimSchubertSchapert2015, author = {Magenheim, Johannes and Schubert, Sigrid and Schapert, Niclas}, title = {Modelling and Measurement of Competencies in Computer Science Education}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82592}, pages = {33 -- 57}, year = {2015}, abstract = {As a result of the Bologna reform of educational systems in Europe the outcome orientation of learning processes, competence-oriented descriptions of the curricula and competence-oriented assessment procedures became standard also in Computer Science Education (CSE). The following keynote addresses important issues of shaping a CSE competence model especially in the area of informatics system comprehension and object-oriented modelling. Objectives and research methodology of the project MoKoM (Modelling and Measurement of Competences in CSE) are explained. Firstly, the CSE competence model was derived based on theoretical concepts and then secondly the model was empirically examined and refined using expert interviews. Furthermore, the paper depicts the development and examination of a competence measurement instrument, which was derived from the competence model. Therefore, the instrument was applied to a large sample of students at the gymnasium's upper class level. Subsequently, efforts to develop a competence level model, based on the retrieved empirical results and on expert ratings are presented. Finally, further demands on research on competence modelling in CSE will be outlined.}, language = {en} } @article{BarnesKennewell2015, author = {Barnes, Jan and Kennewell, Steve}, title = {Teacher Perceptions of Key Competencies in ICT}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82604}, pages = {61 -- 75}, year = {2015}, abstract = {Regardless of what is intended by government curriculum specifications and advised by educational experts, the competencies taught and learned in and out of classrooms can vary considerably. In this paper, we discuss in particular how we can investigate the perceptions that individual teachers have of competencies in ICT, and how these and other factors may influence students' learning. We report case study research which identifies contradictions within the teaching of ICT competencies as an activity system, highlighting issues concerning the object of the curriculum, the roles of the participants and the school cultures. In a particular case, contradictions in the learning objectives between higher order skills and the use of application tools have been resolved by a change in the teacher's perceptions which have not led to changes in other aspects of the activity system. We look forward to further investigation of the effects of these contradictions in other case studies and on forthcoming curriculum change.}, language = {en} } @article{BroekerKastensMagenheim2015, author = {Br{\"o}ker, Kathrin and Kastens, Uwe and Magenheim, Johannes}, title = {Competences of Undergraduate Computer Science Students}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82613}, pages = {77 -- 96}, year = {2015}, abstract = {The paper presents two approaches to the development of a Computer Science Competence Model for the needs of curriculum development and evaluation in Higher Education. A normativetheoretical approach is based on the AKT and ACM/IEEE curriculum and will be used within the recommendations of the German Informatics Society (GI) for the design of CS curricula. An empirically oriented approach refines the categories of the first one with regard to specific subject areas by conducting content analysis on CS curricula of important universities from several countries. The refined model will be used for the needs of students' e-assessment and subsequent affirmative action of the CS departments.}, language = {en} } @article{DagieneStupuriene2015, author = {Dagiene, Valentina and Stupuriene, Gabriele}, title = {Informatics Education based on Solving Attractive Tasks through a Contest}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82626}, pages = {97 -- 115}, year = {2015}, abstract = {The paper discusses the issue of supporting informatics (computer science) education through competitions for lower and upper secondary school students (8-19 years old). Competitions play an important role for learners as a source of inspiration, innovation, and attraction. Running contests in informatics for school students for many years, we have noticed that the students consider the contest experience very engaging and exciting as well as a learning experience. A contest is an excellent instrument to involve students in problem solving activities. An overview of infrastructure and development of an informatics contest from international level to the national one (the Bebras contest on informatics and computer fluency, originated in Lithuania) is presented. The performance of Bebras contests in 23 countries during the last 10 years showed an unexpected and unusually high acceptance by school students and teachers. Many thousands of students participated and got a valuable input in addition to their regular informatics lectures at school. In the paper, the main attention is paid to the developed tasks and analysis of students' task solving results in Lithuania.}, language = {en} } @article{EllisAbreuEllis2015, author = {Ellis, Jason Brent and Abreu-Ellis, Carla Reis}, title = {Student Perspectives of Social Networking use in Higher Education}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82632}, pages = {117 -- 131}, year = {2015}, abstract = {Social networks are currently at the forefront of tools that lend to Personal Learning Environments (PLEs). This study aimed to observe how students perceived PLEs, what they believed were the integral components of social presence when using Facebook as part of a PLE, and to describe student's preferences for types of interactions when using Facebook as part of their PLE. This study used mixed methods to analyze the perceptions of graduate and undergraduate students on the use of social networks, more specifically Facebook as a learning tool. Fifty surveys were returned representing a 65 \% response rate. Survey questions included both closed and open-ended questions. Findings suggested that even though students rated themselves relatively well in having requisite technology skills, and 94 \% of students used Facebook primarily for social use, they were hesitant to migrate these skills to academic use because of concerns of privacy, believing that other platforms could fulfil the same purpose, and by not seeing the validity to use Facebook in establishing social presence. What lies at odds with these beliefs is that when asked to identify strategies in Facebook that enabled social presence to occur in academic work, the majority of students identified strategies in five categories that lead to social presence establishment on Facebook during their coursework.}, language = {en} } @article{GrillenbergerRomeike2015, author = {Grillenberger, Andreas and Romeike, Ralf}, title = {Teaching Data Management}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82648}, pages = {133 -- 150}, year = {2015}, abstract = {Data management is a central topic in computer science as well as in computer science education. Within the last years, this topic is changing tremendously, as its impact on daily life becomes increasingly visible. Nowadays, everyone not only needs to manage data of various kinds, but also continuously generates large amounts of data. In addition, Big Data and data analysis are intensively discussed in public dialogue because of their influences on society. For the understanding of such discussions and for being able to participate in them, fundamental knowledge on data management is necessary. Especially, being aware of the threats accompanying the ability to analyze large amounts of data in nearly real-time becomes increasingly important. This raises the question, which key competencies are necessary for daily dealings with data and data management. In this paper, we will first point out the importance of data management and of Big Data in daily life. On this basis, we will analyze which are the key competencies everyone needs concerning data management to be able to handle data in a proper way in daily life. Afterwards, we will discuss the impact of these changes in data management on computer science education and in particular database education.}, language = {en} } @article{Haugsbakken2015, author = {Haugsbakken, Halvdan}, title = {The Student Learning Ecology}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82659}, pages = {151 -- 169}, year = {2015}, abstract = {Educational research on social media has showed that students use it for socialisation, personal communication, and informal learning. Recent studies have argued that students to some degree use social media to carry out formal schoolwork. This article gives an explorative account on how a small sample of Norwegian high school students use social media to self-organise formal schoolwork. This user pattern can be called a "student learning ecology", which is a user perspective on how participating students gain access to learning resources.}, language = {en} } @article{Jones2015, author = {Jones, Anthony}, title = {ICT Competencies for School Students}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82663}, pages = {171 -- 179}, year = {2015}, abstract = {This paper discusses results from a small-scale research study, together with some recently published research into student perceptions of ICT for learning in schools, to consider relevant skills that do not appear to currently being taught. The paper concludes by raising three issues relating to learning with and through ICT that need to be addressed in school curricula and classroom teaching.}, language = {en} } @article{Weigend2015, author = {Weigend, Michael}, title = {How Things Work}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82814}, pages = {285 -- 298}, year = {2015}, abstract = {Recognizing and defining functionality is a key competence adopted in all kinds of programming projects. This study investigates how far students without specific informatics training are able to identify and verbalize functions and parameters. It presents observations from classroom activities on functional modeling in high school chemistry lessons with altogether 154 students. Finally it discusses the potential of functional modelling to improve the comprehension of scientific content.}, language = {en} } @article{BottinoChioccariello2015, author = {Bottino, Rosa and Chioccariello, Augusto}, title = {Computational Thinking}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82820}, pages = {301 -- 309}, year = {2015}, abstract = {Digital technology has radically changed the way people work in industry, finance, services, media and commerce. Informatics has contributed to the scientific and technological development of our society in general and to the digital revolution in particular. Computational thinking is the term indicating the key ideas of this discipline that might be included in the key competencies underlying the curriculum of compulsory education. The educational potential of informatics has a history dating back to the sixties. In this article, we briefly revisit this history looking for lessons learned. In particular, we focus on experiences of teaching and learning programming. However, computational thinking is more than coding. It is a way of thinking and practicing interactive dynamic modeling with computers. We advocate that learners can practice computational thinking in playful contexts where they can develop personal projects, for example building videogames and/or robots, share and discuss their construction with others. In our view, this approach allows an integration of computational thinking in the K-12 curriculum across disciplines.}, language = {en} } @article{ChristensenKnezek2015, author = {Christensen, Rhonda and Knezek, Gerald}, title = {The Technology Proficiency Self-Assessment Questionnaire (TPSA)}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82838}, pages = {311 -- 318}, year = {2015}, abstract = {The Technology Proficiency Self-Assessment (TPSA) questionnaire has been used for 15 years in the USA and other nations as a self-efficacy measure for proficiencies fundamental to effective technology integration in the classroom learning environment. Internal consistency reliabilities for each of the five-item scales have typically ranged from .73 to .88 for preservice or inservice technology-using teachers. Due to changing technologies used in education, researchers sought to renovate partially obsolete items and extend self-efficacy assessment to new areas, such as social media and mobile learning. Analysis of 2014 data gathered on a new, 34 item version of the TPSA indicates that the four established areas of email, World Wide Web (WWW), integrated applications, and teaching with technology continue to form consistent scales with reliabilities ranging from .81 to .93, while the 14 new items gathered to represent emerging technologies and media separate into two scales, each with internal consistency reliabilities greater than .9. The renovated TPSA is deemed to be worthy of continued use in the teaching with technology context.}, language = {en} } @article{MainaAngondiWaga2015, author = {Maina, Anthony Gioko and Angondi, Enos Kiforo and Waga, Rosemary}, title = {How does the Implementation of a Literacy Learning Tool Kit influence Literacy Skill Acquisition?}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82856}, pages = {319 -- 326}, year = {2015}, abstract = {This study aimed at following how teachers transfer skills into results while using ABRA literacy software. This was done in the second part of the pilot study whose aim was to provide equity to control group teachers and students by exposing them to the ABRACADABRA treatment after the end of phase 1. This opportunity was used to follow the phase 1 teachers to see how the skills learned were being transformed into results. A standard three-day initial training and planning session on how to use ABRA to teach literacy was held at the beginning of each phase for ABRA teachers (phase 1 experimental and phase 2 delayed ABRA). Teachers were provided with teaching materials including a tentative ABRA curriculum developed to align with the Kenyan English Language requirements for year 1 and 3 students. Results showed that although there was no significant difference between the groups in vocabulary-related subscales which include word reading and meaning as well as sentence comprehension, students in ABRACADABRA classes improved their scores at a significantly higher rate than students in control classes in comprehension related scores. An average student in the ABRACADABRA group improved by 12 and 16 percentile points respectively compared to their counterparts in the control group.}, language = {en} } @article{Ohrndorf2015, author = {Ohrndorf, Laura}, title = {Assignments in Computer Science Education}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82868}, pages = {327 -- 333}, year = {2015}, abstract = {In this paper we describe the recent state of our research project concerning computer science teachers' knowledge on students' cognition. We did a comprehensive analysis of textbooks, curricula and other resources, which give teachers guidance to formulate assignments. In comparison to other subjects there are only a few concepts and strategies taught to prospective computer science teachers in university. We summarize them and given an overview on our empirical approach to measure this knowledge.}, language = {en} } @article{OrBach2015, author = {Or-Bach, Rachel}, title = {Programming for Non-Programmers}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82875}, pages = {335 -- 342}, year = {2015}, abstract = {The study reported in this paper involved the employment of specific in-class exercises using a Personal Response System (PRS). These exercises were designed with two goals: to enhance students' capabilities of tracing a given code and of explaining a given code in natural language with some abstraction. The paper presents evidence from the actual use of the PRS along with students' subjective impressions regarding both the use of the PRS and the special exercises. The conclusions from the findings are followed with a short discussion on benefits of PRS-based mental processing exercises for learning programming and beyond.}, language = {en} }